已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程.
科目:高中数学 来源: 题型:解答题
椭圆:的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且。
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知椭圆的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点P(0,1),且|PA|=|PB|,求直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,已知直线OP1,OP2为双曲线E:的渐近线,△P1OP2的面积为,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为.
(1)若P1、P2点的横坐标分别为x1、x2,则x1、x2之间满足怎样的关系?并证明你的结论;
(2)求双曲线E的方程;
(3)设双曲线E上的动点,两焦点,若为钝角,求点横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,
且。
(1) 求抛物线方程;
(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆O:和定点A(2,1),由圆O外一点向圆O引切线PQ,切点为Q,且满足
(1) 求实数a、b间满足的等量关系;
(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为.
(1)求抛物线的方程;
(2)求双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,其中左焦点(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com