(本小题满分12分)
已知椭圆C :经过点离心率为。
(Ⅰ) 求椭圆C的方程;
(Ⅱ)设直线l与椭圆C相交于A、B两点,以线段OA、OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点。求O到直线l的距离的最小值。
(1);(2)点O到直线l的距离的最小值为。
解析试题分析:(1)由已知, 所以.
又点在椭圆C上,可以得
所以椭圆方程为 (4分)
(2)当直线l有斜率时,设方程为
则由消去y,得
设点A、B、P的坐标分别为
则 (7分)
P 在椭圆上,可得,化简得
需满足
又点O到直线l的距离为d=
当且仅当k=0时等号成立。
当直线l斜率不存在时,由对称性知,点P一定在x轴上,
从而P(-2,0)(2,0),直线l为x=1或x=-1,所以点O
到直线l的距离为1.
所以点O到直线l的距离的最小值为。 (12分)
(直接写出P为短轴端点,并求出距离,但未证明的给4分)
考点:本题主要考查椭圆标准方程,直线与椭圆的位置关系。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆标准方程时,主要运用了椭圆的定义及几何性质。(2)作为研究点到直线的距离最值问题,利用了函数思想。
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,的两个顶点、的坐标分别是(-1,0),(1,0),点是的重心,轴上一点满足,且.
(1)求的顶点的轨迹的方程;
(2)不过点的直线与轨迹交于不同的两点、,当时,求与的关系,并证明直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且
(Ⅰ)求证:直线AB过抛物线C的焦点;
(Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
已知椭圆的离心率为,一条准线.
(1)求椭圆的方程;
(2)设O为坐标原点,是上的点,为椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于两点.
①若,求圆的方程;
②若是l上的动点,求证:点在定圆上,并求该定圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点,且离心率.
(1)求椭圆的标准方程;
(2)是否存在过点的直线交椭圆于不同的两点M、N,且满足(其中点O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,
且。
(1) 求抛物线方程;
(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个顶点到两个焦点的距离分别是7和1
(1)求椭圆的方程
(2)若为椭圆的动点,为过且垂直于轴的直线上的点,(e为椭圆C的离心率),求点的轨迹方程,并说明轨迹是什么曲线?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆M的中心为坐标原点 ,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率,过M的右焦点F作不与坐标轴垂直的直线,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com