精英家教网 > 高中数学 > 题目详情
设函数f(x)=lnx-
1
2
ax2+x

(1)当a=2时,求f(x)的最大值;
(2)令F(x)=f(x)+
1
2
ax2-x+
a
x
(0<x≤3),以其图象上任意一点P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的取值范围;
(3)当a=0时,方程mf(x)=x2有唯一实数解,求正数m的值.
解(1)a=2时,f(x)=lnx+x-x2f/(x)=
1
x
+1-2x
…(1分),
解f′(x)=0得x=1或x=-
1
2
(舍去)…(2分),
当x∈(0,1)时,f′(x)>0,f(x)单调增加,
当x∈(1,+∞)时,f′(x)<0,f(x)单调减少…(3分),
所以f(x)的最大值为f(1)=0…(4分)
(2)F(x)=lnx+
a
x
(0<x≤3),k=F/(x0)=
1
x0
-
a
x02
(0<x0≤3)…(6分)
k≤
1
2
恒成立得a≥x0-
1
2
x02=-
1
2
(x0-1)2+
1
2
恒成立…(7分)
因为-
1
2
(x0-1)2+
1
2
1
2
,等号当且仅当x0=1时成立…(8分),
所以a≥
1
2
…(9分)
(3)a=0时,方程mf(x)=x2即x2-mx-mlnx=0,
设g(x)=x2-mx-mlnx,
g/(x)=2x-m-
m
x
=0
…(10分),得x1=
m-
m2+8m
4
(<0舍去),x2=
m+
m2+8m
4

类似(1)的讨论知,g(x)在x∈(0,x2)单调增加,
在x∈(x2,+∞)单调减少,最大值为g(x2)…(11分),
因为mf(x)=x2有唯一实数解,g(x)有唯一零点,所以g(x2)=0…(12分),
g′ (x2)=0
g(x2)=0
得x2+2lnx2-1=0,
因为h(x)=x+lnx-1单调递增,且h(1)=0,
所以x2=1…(13分),
从而m=1…(14分).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0.
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:p<(
9
10
)19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x-1)+
2a
x
(a∈R)

(1)求函数f(x)的单调区间;
(2)如果当x>1,且x≠2时,
ln(x-1)
x-2
a
x
恒成立,则求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+1)-
2x
的零点为x0,若x0∈(k,k+1),k为整数,则k的值等于
-1或1
-1或1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)设函数f(x)=ln(x+a)-x2
(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).
(2)若f(x)在区间[1,2]上为减函数,求a的取值范围.
(3)若直线y=x为函数f(x)的图象的一条切线,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln,则函数f()+f()的定义域为_______.

查看答案和解析>>

同步练习册答案