精英家教网 > 高中数学 > 题目详情
(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
(1) (2)定值为

试题分析:(1)由题意可知:a+c= +1 ,c=1
∴a=, ∴所求椭圆的方程为: 
(2)设直线l的方程为:y=k(x-1)A(x1,y1) ,B(x2,y2),M(,0)联立 
 






为定值
点评:直线与椭圆相交,常用到韦达定理使计算简化,圆锥曲线中的向量运算常转化为点的坐标运算,本题有一定难度
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)过点(1,0)直线交抛物线于A(x1,y1),B(x2,y2)两点,抛物线的顶点是
(ⅰ)证明:为定值;
(ⅱ)若AB中点横坐标为2,求AB的长度及的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线(a>0,b>0)的两个焦点为,若P为其上一点, , 则双曲线离心率的取值范围为(     )
A.(3,+)B.C.(1,3)D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(理)已知椭圆的一个焦点为,点在椭圆上,点满足(其中为坐标原点),过点作一直线交椭圆于两点 .
(1)求椭圆的方程;
(2)求面积的最大值;
(3)设点为点关于轴的对称点,判断的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的右焦点重合,则的值为(   )
A.B.C.D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆与圆为椭圆半焦距)有四个不同交点,则离心率的取值范围是 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设直线与直线交于点.
(1)当直线点,且与直线垂直时,求直线的方程;
(2)当直线点,且坐标原点到直线的距离为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设曲线与抛物线的准线围成的三角形区域(包含边界)为内的一个动点,则目标函数的最大值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为,则它的渐近线方程为
A.B.C.D.

查看答案和解析>>

同步练习册答案