精英家教网 > 高中数学 > 题目详情
椭圆与圆为椭圆半焦距)有四个不同交点,则离心率的取值范围是 (   )
A.B.C.D.
A

试题分析:∵椭圆椭圆与圆的中心都在原点,
且它们有四个交点,
∴圆的半径满足
,得2c>b,再平方,4c2>b2
在椭圆中,a2=b2+c2<5c2
∴e=
,得b+2c<2a,
再平方,b2+4c2+4bc<4a2
∴3c2+4bc<3a2
∴4bc<3b2
∴4c<3b,
∴16c2<9b2
∴16c2<9a2-9c2
∴9a2>25c2

∴e<
综上所述,

故选A.
点评:典型题,本题在考查数学知识的同时,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。

(Ⅰ)求椭圆的方程;
(Ⅱ)设不经过原点的直线与椭圆相交与AB两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的右焦点为,则该双曲线的渐近线方程为(    )                         
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,已知点A(0,2),直线l:x+y-4=0,点B(x,y)是圆C:x2+y2-2x-1=0上的动点,AD⊥l,BE⊥l,垂足分别为D、E,则线段DE的最大值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若的最大值为49,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的焦点坐标是 (   )
A.(–2,0),(2,0)B.(0,–2),(0,2)
C.(0,–4),(0,4)D.(–4,0),(4,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线上不存在点P使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆E: 的左右焦点,P在直线上一点,是底角为的等腰三角形,则椭圆E的离心率为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案