精英家教网 > 高中数学 > 题目详情
若双曲线上不存在点P使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为
A.B.C.D.
C

试题分析:要满足双曲线上不存在点P使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,需满足双曲线与直线y=x没有交点,所以从第一象限看,直线y=x在直线的上方,所以,所以。因此选C。
点评:分析出直线y=x与双曲线没有交点是解此题的关键。考查了学生分析问题、解决问题的能力,难度较大。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

椭圆的左、右焦点为,直线x=m过且与椭圆相交于A,B两点,则的面积等于          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆与圆为椭圆半焦距)有四个不同交点,则离心率的取值范围是 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设曲线与抛物线的准线围成的三角形区域(包含边界)为内的一个动点,则目标函数的最大值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线的焦点F恰好是曲线的右焦点,且交点的连线过点F,则曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为,则它的渐近线方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面经过点,且是它的一个法向量. 类比曲线方程的定义以及求曲线方程的基本步骤,可求得平面的方程是        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知双曲线与椭圆有相同焦点,且经过点
求该双曲线方程,并求出其离心率、渐近线方程,准线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):
已知是椭圆上一点,是椭圆的两焦点,且满足
(Ⅰ)求椭圆方程;
(Ⅱ)设是椭圆上任两点,且直线的斜率分别为,若存在常数使,求直线的斜率.

查看答案和解析>>

同步练习册答案