精英家教网 > 高中数学 > 题目详情
解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):
已知是椭圆上一点,是椭圆的两焦点,且满足
(Ⅰ)求椭圆方程;
(Ⅱ)设是椭圆上任两点,且直线的斜率分别为,若存在常数使,求直线的斜率.
(I);(II)

试题分析:(I)根据,可知a=2,所以再把点A的坐标代入椭圆方程求出b的值,求出椭圆的方程.
(II)设直线AC的方程:,由,得:
点C,同理求出D的坐标,再利用斜率公式即可证明CD的斜率为定值.
(I)所求椭圆方程…………………3分;
(II)设直线AC的方程:,由,得:
点C…………………………..5分;
同理 ………………………..6分;
 
……………………8分;
要使为常数, +(1-)=0,
…………………………10分.
点评:椭圆上的点到两焦点的距离之和为定值,也就是常数2a,再根据其它条件建立关于b的方程,求出b即可得到椭圆的标准方程.
在证明CD的斜率为定值时,关键是求出点C,D的坐标,需要用直线方程与椭圆方程联立求解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆,离心率为的椭圆经过点.
(1)求该椭圆的标准方程;
(2)过椭圆的一个焦点且互相垂直的直线分别与椭圆交于,是否存在常数,使得?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知:椭圆的中心为,长轴的两个端点为,右焦点为.若椭圆经过点上的射影为,且△的面积为5.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知圆=1,直线=1,试证明:当点在椭圆
运动时,直线与圆恒相交;并求直线被圆截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线上不存在点P使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆E: 的左右焦点,P在直线上一点,是底角为的等腰三角形,则椭圆E的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线焦点的直线依次交抛物线与圆于点A、B、C、D,则的值是(   )

A.8              B.4             C.2                   D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的准线方程为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的两焦点为,以为边作正三角形,若椭圆恰好平分该正三角形的另两边,则椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于平面直角坐标系内的任意两点,定义它们之间的一种“距离”:.给出下列三个命题:
①若点C在线段AB上,则;
②在中,若∠C=90°,则
③在中,
其中真命题的个数为(   )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案