精英家教网 > 高中数学 > 题目详情
是椭圆E: 的左右焦点,P在直线上一点,是底角为的等腰三角形,则椭圆E的离心率为(  )
A.B.C.D.
B

试题分析:设与x轴交于A点,由已知可得

点评:本题结合图形可容易得到关系式
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知椭圆C:以双曲线的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)过点(1,0)直线交抛物线于A(x1,y1),B(x2,y2)两点,抛物线的顶点是
(ⅰ)证明:为定值;
(ⅱ)若AB中点横坐标为2,求AB的长度及的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆与圆为椭圆半焦距)有四个不同交点,则离心率的取值范围是 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面经过点,且是它的一个法向量. 类比曲线方程的定义以及求曲线方程的基本步骤,可求得平面的方程是        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知双曲线与椭圆有相同焦点,且经过点
求该双曲线方程,并求出其离心率、渐近线方程,准线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线与曲线有两个不同的交点,则实数的取值范围是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):
已知是椭圆上一点,是椭圆的两焦点,且满足
(Ⅰ)求椭圆方程;
(Ⅱ)设是椭圆上任两点,且直线的斜率分别为,若存在常数使,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,设是圆上的动点,点D是轴上的投影,M为D上一点,且
(Ⅰ)当的在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度。

查看答案和解析>>

同步练习册答案