精英家教网 > 高中数学 > 题目详情
(12分)已知椭圆C:以双曲线的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.
(1)(2)①证明见解析②

试题分析:(1)易知双曲线的焦点为(-2,0),(2,0),离心率为,……2分
则在椭圆C中a=2,e=
故在椭圆C中c=,b=1,所以椭圆C的方程为               ……4分
(2)①设M(x0,y0)(x0≠±2),由题易知A(-2,0),B(2,0),
则kMA,kMB,故kMA·kMB,        ……6分
点M在椭圆C上,则,即
故kMA·kMB,即直线MA,MB的斜率之积为定值。                      ……8分
②解法一:设P(4,y1),Q(4,y2),则kMA=kPA,kMB=kBQ,……9分
由①得,即y1y2=-3,当y1>0,y2<0时,|PQ|=|y1-y2|≥2 ,当且仅当y1,y2=-时等号成立.……11分
同理,当y1<0,y2>0时,当且仅当,y2时,|PQ|有最小值. ……12分
解法二:设直线MA的斜率为k,则直线MA的方程为y=k(x+2),从而P(4,6k) ……9分
由①知直线MB的斜率为,则直线MB的方程为y=(x-2),
故得,故,当且仅当时等号成立,
即|PQ|有最小值.                                                  ……12分
点评:直线与圆锥曲线位置关系的题目是每年高考必考的题目,且一般都以压轴题的形式出现,所以难度较大,关键是运算量比较大,要尽量应用数形结合简化运算,还要细心求解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题12分)
已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若的最大值为49,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上的一动点,且与椭圆长轴两顶点连线的斜率之积最小值为,则椭圆离心率为
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

k为何值时,直线y=kx+2和椭圆有两个交点 (   )
A.—<k<B.k>或k< —
C.—kD.k或k

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆E: 的左右焦点,P在直线上一点,是底角为的等腰三角形,则椭圆E的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点,为椭圆上的动点.
(1)求椭圆的标准方程;
(2)若均不重合,设直线的斜率分别为,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线焦点的直线依次交抛物线与圆于点A、B、C、D,则的值是(   )

A.8              B.4             C.2                   D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
在直角坐标系中,点到两点的距离之和等于,设点的轨迹为
(1)求曲线的方程;
(2)过点作两条互相垂直的直线分别与曲线交于
①以线段为直径的圆过能否过坐标原点,若能求出此时的值,若不能说明理由;
②求四边形面积的取值范围。

查看答案和解析>>

同步练习册答案