【题目】在四棱柱中, 底面,底面为菱形, 为与交点,已知,.
(Ⅰ)求证: 平面;
(Ⅱ)求证: ∥平面;
(Ⅲ)设点在内(含边界),且 ,说明满足条件的点的轨迹,并求的最小值.
【答案】(Ⅰ)详见解析(Ⅱ)详见解析;(Ⅲ)点的轨迹是线段, .
【解析】试题分析:(Ⅰ)求证:平面,证明线面垂直,即证线线垂直,即在平面找两条相交直线与垂直,由于底面为菱形,则,又底面,得底面,即,从而得证;(Ⅱ)求证:∥平面,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,注意到是的中点,连接,交于点,连接,证得四边形是平行四边形,从而得∥,从而可证∥平面;(Ⅲ)连接,则,又在中,,又为中点,所以,得平面,由已知可知,∥,由,得,故点一定在线段上,这样就得到点的轨迹,进而可得的最小值.
试题解析:解:(Ⅰ)依题意, 因为四棱柱中, 底面,所以底面.
又底面,
所以 .
因为为菱形,
所以.
而,
所以平面.
(Ⅱ)连接,交于点,连接.
依题意, ∥,
且, ,
所以为矩形.
所以∥.
又, , ,
所以= ,所以为平行四边形,
则∥.
又平面, 平面,
所以∥平面.
(Ⅲ)在内,满足 的点的轨迹是线段,包括端点.
分析如下:连接,则.
由于∥,故欲使 ,只需,从而需.
又在中, ,又为中点,所以 .
故点一定在线段上.
当时, 取最小值.
在直角三角形中, , ,,
所以.
科目:高中数学 来源: 题型:
【题目】如图所示,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=θ,当△POC面积的最大值时θ的值为___________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N* , 总有b1b2b3…bn﹣1bn=an+2成立.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=(﹣1)n ,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内有向量 =(1,7), =(5,1), =(2,1),点X为直线OP上的一个动点.
(1)当 取最小值时,求 的坐标;
(2)当点X满足(1)的条件和结论时,求cos∠AXB的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,一动圆与直线相切且与圆外切.
(1)求动圆圆心的轨迹的方程;
(2)若经过定点的直线与曲线交于两点, 是线段的中点,过作轴的平行线与曲线相交于点,试问是否存在直线,使得,若存在,求出直线的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Tn= n2﹣ n,且an+2+3log4bn=0(n∈N*)
(1)求{bn}的通项公式;
(2)数列{cn}满足cn=anbn , 求数列{cn}的前n项和Sn;
(3)若cn≤ m2+m﹣1对一切正整数n恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC—A1B1C1中,AB=BC=BB1, ,D为AC上的点,B1C∥平面A1BD;
(1)求证:BD⊥平面;
(2)若且,求三棱锥A-BCB1的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com