【题目】如图所示,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=θ,当△POC面积的最大值时θ的值为___________
科目:高中数学 来源: 题型:
【题目】已知正方体,点, , 分别是线段, 和上的动点,观察直线与, 与.给出下列结论:
①对于任意给定的点,存在点,使得;
②对于任意给定的点,存在点,使得;
③对于任意给定的点,存在点,使得;
④对于任意给定的点,存在点,使得.
其中正确结论的个数是( ).
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一缉私艇发现在方位角45°方向,距离12海里的海面上有一走私船正以10海里/小时的速度沿方位角为105°方向逃窜,若缉私艇的速度为14海里/小时,缉私艇沿方位角45°+α的方向追去,若要在最短的时间内追上该走私船,求追击所需时间和α角的正弦.(注:方位角是指正北方向按顺时针方向旋转形成的角,设缉私艇与走私船原来的位置分别为A、C,在B处两船相遇).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
回归方程为 =bx+a,其中b= ,a= ﹣b .
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y与x的回归方程 =bx+a;
(3)预测销售额为115万元时,大约需要多少万元广告费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 是半圆的直径, 是半圆上除、外的一个动点, 垂直于半圆所在的平面, , , , .
(1)证明:平面平面;
(2)当三棱锥体积最大时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲船在岛B的正南A处,AB=10千米.甲船以每小时4千米的速度向北航行,同时,乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去.当甲船在A,B之间,且甲、乙两船相距最近时,它们所航行的时间是( )
A. 分钟 B. 小时 C. 21.5分钟 D. 2.15分钟
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱柱中, 底面,底面为菱形, 为与交点,已知,.
(Ⅰ)求证: 平面;
(Ⅱ)求证: ∥平面;
(Ⅲ)设点在内(含边界),且 ,说明满足条件的点的轨迹,并求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某地区儿童的身高与体重的一组数据,我们用两种模型①,②拟合,得到回归方程分别为, ,作残差分析,如表:
身高 | 60 | 70 | 80 | 90 | 100 | 110 |
体重 | 6 | 8 | 10 | 14 | 15 | 18 |
0.41 | 0.01 | 1.21 | -0.19 | 0.41 | ||
-0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅰ)求表中空格内的值;
(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;
(Ⅲ)残差大于的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.
(结果保留到小数点后两位)
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com