精英家教网 > 高中数学 > 题目详情

【题目】如图所示,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOPθ,当△POC面积的最大值时θ的值为___________

【答案】30度

【解析】(本小题满分12分)

解:因为CP∥OB,所以∠CPO∠POB60°θ∴∠OCP120°.

△POC中,由正弦定理得

=,=,所以CPsinθ.

又=,∴OCsin(60°θ).

因此△POC的面积为S(θ)CP·OCsin120°

·sinθ·sin(60°θ)×sinθsin(60°θ)sinθ(cosθsinθ)

[cos(2θ60°)]θ∈(0°60°).

所以当θ30°时,S(θ)取得最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方体,点 分别是线段 上的动点,观察直线 .给出下列结论:

①对于任意给定的点,存在点,使得

②对于任意给定的点,存在点,使得

③对于任意给定的点,存在点,使得

④对于任意给定的点,存在点,使得

其中正确结论的个数是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三次函数的导函数

(1)求的极值;

(2)求证:对任意,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一缉私艇发现在方位角45°方向,距离12海里的海面上有一走私船正以10海里/小时的速度沿方位角为105°方向逃窜,若缉私艇的速度为14海里/小时,缉私艇沿方位角45°+α的方向追去,若要在最短的时间内追上该走私船,求追击所需时间和α角的正弦.(注:方位角是指正北方向按顺时针方向旋转形成的角,设缉私艇与走私船原来的位置分别为A、C,在B处两船相遇).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据

x

2

4

5

6

8

y

30

40

60

50

70

回归方程为 =bx+a,其中b= ,a= ﹣b
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y与x的回归方程 =bx+a;
(3)预测销售额为115万元时,大约需要多少万元广告费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是半圆的直径, 是半圆上除外的一个动点, 垂直于半圆所在的平面, .

(1)证明:平面平面

(2)当三棱锥体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲船在岛B的正南A处,AB=10千米.甲船以每小时4千米的速度向北航行,同时,乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去.当甲船在AB之间,且甲、乙两船相距最近时,它们所航行的时间是(  )

A. 分钟 B. 小时 C. 21.5分钟 D. 2.15分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中, 底面,底面为菱形, 交点,已知,.

)求证: 平面

)求证: 平面

)设点内(含边界), ,说明满足条件的点的轨迹,并求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某地区儿童的身高与体重的一组数据,我们用两种模型①,②拟合,得到回归方程分别为 ,作残差分析,如表:

身高

60

70

80

90

100

110

体重

6

8

10

14

15

18

0.41

0.01

1.21

-0.19

0.41

-0.36

0.07

0.12

1.69

-0.34

-1.12

(Ⅰ)求表中空格内的值;

(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;

(Ⅲ)残差大于的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.

(结果保留到小数点后两位)

附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为 .

查看答案和解析>>

同步练习册答案