已知在等差数列{an}中,a1=31,Sn是它的前n项和,S10=S22.
(1)求Sn;
(2)这个数列的前多少项的和最大,并求出这个最大值.
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第6课时练习卷(解析版) 题型:解答题
设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第4课时练习卷(解析版) 题型:填空题
在数列{an}中,若a1=1,an+1=an+2(n≥1),则该数列的通项an=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第3课时练习卷(解析版) 题型:填空题
已知两个数k+9和6-k的等比中项是2k,则k=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第2课时练习卷(解析版) 题型:解答题
已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.
(1)求a及k的值;
(2)设数列{bn}的通项bn=,证明数列{bn}是等差数列,并求其前n项和Tn.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第2课时练习卷(解析版) 题型:解答题
已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2·a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)设由bn= (c≠0)构成的新数列为{bn},求证:当且仅当c=-时,数列{bn}是等差数列.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第1课时练习卷(解析版) 题型:解答题
已知数列的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1).
(1)求{an}的通项公式;
(2)令Tn= Sn,是否存在正整数m,对一切正整数n,总有Tn≤Tm?若存在,求m的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第9课时练习卷(解析版) 题型:填空题
已知函数f(x)=,x∈[-1,8],函数g(x)=ax+2,x∈[-1,8],若存在x∈[-1,8],使f(x)=g(x)成立,则实数a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第7课时练习卷(解析版) 题型:填空题
已知a=log36,b=log510,c=log714,则a、b、c的大小关系为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com