精英家教网 > 高中数学 > 题目详情
(2012•太原模拟)已知定义在R上的函数y=f(x-1)的图象关于点(1,0)对称,且x∈(-∞,0)时,f(x)+xf′(x)<0成立,(其中f′(x)是f(x)的导函数),a=(30.3)f(30.3),b=(logπ3).f(logπ3),c=(log3
1
9
)f(log3
1
9
)
则a,b,c的大小关系是(  )
分析:由“当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立”知xf(x)是减函数,要得到a,b,c的大小关系,只要比较30.3
log
 
π
3,
log
 
3
1
9
的大小即可.
解答:解:∵当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立
即:(xf(x))′<0,
∴xf(x)在 (-∞,0)上是减函数.
又∵函数y=f(x-1)的图象关于点(1,0)对称,
∴函数y=f(x)的图象关于点(0,0)对称,
∴函数y=f(x)是定义在R上的奇函数
∴xf(x)是定义在R上的偶函数
∴xf(x)在 (0,+∞)上是增函数.
又∵30.3>1>
log
 
π
3>0>
log
 
3
1
9
=-2,
2=-
log
 
3
1
9
>30.3>1>
log
 
π
3 >0

(-log3
1
9
)•f(-log3
1
9
)
>30.3•f(30.3)>(logπ3)•f(logπ3)
(log3
1
9
)•f(log3
1
9
)
>30.3•f(30.3)>(logπ3)•f(logπ3)
即:c>a>b
故选C.
点评:本题考查的考点与方法有:1)所有的基本函数的奇偶性;2)抽象问题具体化的思想方法,构造函数的思想;3)导数的运算法则:(uv)′=u′v+uv′;4)指对数函数的图象;5)奇偶函数在对称区间上的单调性:奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.本题结合已知构造出h(x)是正确解答的关键所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•太原模拟)已知向量
a
=(1,2)
b
=(x,4)
,且
a
b
,则x=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•太原模拟)已知向量
a
=(2,4),
b
=(1,1),若向量
b
⊥(λ
a
+
b
),则实数λ的值是
-
1
3
-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•太原模拟)已知复数(a2-4a+3)+(a-1)i是纯虚数,(a∈R),则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•太原模拟)选修4-1:几何证明选讲
如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.
(Ⅰ)证明:∠ADE=∠AED;
(Ⅱ)若AC=AP,求
PCPA
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•太原模拟)已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=log4x+x的零点依次为a,b,c,则(  )

查看答案和解析>>

同步练习册答案