精英家教网 > 高中数学 > 题目详情

如图在正三棱锥P-ABC中,侧棱长为3,底面边长为2,E为BC的中点,

(1)求证:BC⊥PA
(2)求点C到平面PAB的距离

(1)详见解析;(2)

解析试题分析:(1)解题思路证线面垂直得线线垂直,详见解析。(2)过点P做面ABC的垂线,垂足为O,因为三棱锥P-ABC为正三棱锥,则点O为底面三角形的中心。则,在直角三角形POA中求PO,PO即为三棱锥P-ABC的高,可求得三棱锥体积为。又因为三角形PAB各边长已知可求其面积,设出点C到面PAB的距离h,也可表示出三棱锥的体积,根据体积相等即,可求出h。

试题解析:证明(1)E为BC的中点,又为正三棱锥
 因为,所以BC⊥PA
(2)设点C到平面PAB的距离为

         10分
              12分
考点:线线垂直,点到面的距离

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:

(1)PA∥平面MDB;
(2)PD⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为梯形,, 平面,的中点

(Ⅰ)证明:
(Ⅱ)若,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为矩形,且,,,

(Ⅰ)平面PAD与平面PAB是否垂直?并说明理由;
(Ⅱ)求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

(Ⅰ)求证:
(Ⅱ)设

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上任一点.

(Ⅰ)求证:无论E点取在何处恒有
(Ⅱ)设,当平面EDC平面SBC时,求的值;
(Ⅲ)在(Ⅱ)的条件下求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,的中点,的中点,且为正三角形.

(1)求证:平面
(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若PA=,PC与侧面APB所成角的余弦值为,PB与底面ABC成60°角,求二面角B―PC―A的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(1)若点在线段上,问:无论的何处,是否都有?请证明你的结论;
(2)求二面角的平面角的余弦.

查看答案和解析>>

同步练习册答案