精英家教网 > 高中数学 > 题目详情

对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。

(1)若递增区间为,若递增区间为,若,则递增区间为递增区间为(2)存在函数的图像是函数过点的“分界线”。

解析试题分析:(1)

①若,则,此时的递增区间为
②若,则,此时的递增区间为
③若,则的递增区间为
④若,则,此时的递增区间为
(2)当时,,假设存在实数,使不等式恒成立,
得到恒成立,
,得
下面证明恒成立。

时,
时,
所以,即恒成立。
综上,存在函数的图像是函数过点的“分界线”。
考点:函数单调区间及不等式恒成立
点评:第一小题求单调区间针对于不同的值对应不同的极值点,因此需对值分情况讨论以求单调性;第二问在正确理解给定信息的基础上将问题转化为不等式恒成立问题,进而转化为函数最值,可利用导数这一工具求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1) 求函数上的最小值;
(2) 对一切恒成立,求实数a的取值范围;
(3) 证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正比例函数y=2x的图像l1与反比例函数y=的图像相交于点A(a,2),将直线l1向上平移3个单位得到的直线l2与双曲线相交于BC两点(点B在第一象限),与y轴交于点D

(1)求反比例函数的解析式;
(2)求△DOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)当a=1时,求它的单调区间;
(2)当时,讨论它的单调性;
(3)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数有最 大值,求实数的值
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是函数的一个极值点。
(1)求的关系式(用表示),并求的单调区间;
(2)设,若存在,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求函数的值域;
(2)若函数是(-,+)上的减函数,求实数的高考资源网取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且对任意的实数都有成立.
(1)求实数的值;
(2)利用函数单调性的定义证明函数在区间上是增函数.

查看答案和解析>>

同步练习册答案