【题目】钝角三角形ABC的面积是
,AB=1,BC=
,则AC=( )
A.5
B.![]()
C.2
D.1
科目:高中数学 来源: 题型:
【题目】如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F. ![]()
(1)证明:C,E,F,D四点共圆;
(2)若D为BC的中点,且AF=3,FD=1,求AE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性、对称性等,请选择适当的探究顺序,研究函数
的性质,并在此基础上填写下表,作出f(x)在区间[-π,2π]上的图象.
性质 | 理由 | 结论 | 得分 |
定义域 | |||
值域 | |||
奇偶性 | |||
周期性 | |||
单调性 | |||
对称性 | |||
作图 |
| ||
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在长为10千米的河流
的一侧有一条观光带,观光带的前一部分为曲线段
,设曲线段
为函数
(单位:千米)的图象,且图象的最高点为
;观光带的后一部分为线段
.
![]()
(1)求函数为曲线段
的函数
的解析式;
(2)若计划在河流
和观光带
之间新建一个如图所示的矩形绿化带
,绿化带仅由线段
构成,其中点
在线段
上.当
长为多少时,绿化带的总长度最长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2(lnx+lna)(a>0).
(1)当a=1时,设函数g(x)=
,求函数g(x)的单调区间与极值;
(2)设f′(x)是f(x)的导函数,若
≤1对任意的x>0恒成立,求实数a的取值范围;
(3)若x1 , x2∈(
,1),x1+x2<1,求证:x1x2<(x1+x2)4 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F2分别是C:
(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N. ![]()
(1)若直线MN的斜率为
,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(万元)有以下统计资料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2 | 4 | 5 | 6 | 7 |
若由资料知y对x呈线性相关关系。试求:
(1)求
; (2)线性回归方程
;
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算a,b的值时,可根据以下公式:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg
的图象关于原点对称,其中a为常数.
(Ⅰ)求a的值,并求出f(x)的定义域
(Ⅱ)关于x的方程f(2x)+21g(2x-1)=a在x∈[
,
]有实数解,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是
A. 对分类变量X与Y,随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越小
B. 在回归直线方程
=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量
平均增加0.2个单位
C. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1
D. 回归直线过样本点的中心(
,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com