精英家教网 > 高中数学 > 题目详情

【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(万元)有以下统计资料:

使用年限x

2

3

4

5

6

维修费用y

2

4

5

6

7

若由资料知y对x呈线性相关关系。试求:

(1)求; (2)线性回归方程

(3)估计使用10年时,维修费用是多少?

附:利用“最小二乘法”计算a,b的值时,可根据以下公式:

【答案】1 (2) (3)维修费用为12万元

【解析】试题分析:1利用的计算公式即可得出;(2)利用的计算公式得出结果,再求

(3)利用第(2)问得出的回归方程,计算x=10时的结果.

试题解析:

1

(2)

所以,线性回归方程为 .

(3)x=10y=12,所以该设备使用10年,维修费用为12万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是圆外一点,过点作圆的切线,切点为,记四边形的面积为,当在圆上运动时, 的取值范围为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是(
A.21
B.20
C.19
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲所示, 是梯形的高, ,现将梯形沿折起如图乙所示的四棱锥,使得,点是线段上一动点.

(1)证明: 不可能垂直;

(2)当时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与圆交于MN两点,且MN关于直线对称.

(1)求mk的值;

(2)若直线与圆CPQ两点,是否存在实数a使得OPOQ,如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从装有个红球和个黑球的口袋内任取个球,那么互斥而不对立的两个事件是( )

A. 至少有一个黑球与都是黑球 B. 至少有一个黑球与都是红球

C. 至少有一个黑球与至少有个红球 D. 恰有个黑球与恰有个黑球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为矩形, 底面

中点.

(Ⅰ)在图中作出平面的交点,并指出点所在位置(不要求给出理由);

(Ⅱ)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,请说明点的位置;若不存在,请说明理由;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,l1l2是通过某城市开发区中心O的两条南北和东西走向的街道,连结MN两地之间的铁路线是圆心在l2上的一段圆弧.若点M在点O正北方向,且|MO|=3 km,点Nl1l2的距离分别为4 km和5 km.

(1)建立适当的坐标系,求铁路线所在圆弧的方程;

(2)若该城市的某中学拟在点O正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4 km,并且铁路线上任意一点到校址的距离不能少于km,求该校址距点O的最近距离.(注:校址视为一个点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,a2=6,a2+a3=24,在等差数列{bn}中,b1=a1 , b3=﹣10.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案