精英家教网 > 高中数学 > 题目详情

【题目】已知是圆外一点,过点作圆的切线,切点为,记四边形的面积为,当在圆上运动时, 的取值范围为(

A. B. C. D.

【答案】A

【解析】

由题意得到圆心半径圆心半径 位于图形中的位置时,四边形面积最小,过作圆的切线切点分别为连接可得出根据勾股定理得: 此时位于图形中的位置时,四边形面积最大,同理得到,综上, 的范围为,故选A.

【方法点晴】本题主要考查圆的方程、直线与圆的位置关系以及求取值范围问题,属于难题.解决圆解析几何中的取值范围问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆解析几何中取值范围问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题利用圆的几何性质求三角形面积最值的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,求函数的最值;

(Ⅱ)若函数有极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考浙江理数】如图,设椭圆a1.

I)求直线y=kx+1被椭圆截得的线段长(用ak表示);

II)若任意以点A0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值

范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(x﹣ )cos(x﹣ )(x∈R),则下面结论错误的是(
A.函数f(x)的图象关于点(﹣ ,0)对称
B.函数f(x)的图象关于直线x=﹣ 对称
C.函数f(x)在区间[0, ]上是增函数
D.函数f(x)的图象是由函数y= sin2x的图象向右平移 个单位而得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期中考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…,[80,90),[90,100],然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(3)把从[80,90)分数段选取的最高分的两人组成B组,[90,100]分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且

(1)当P在圆上运动时,求点M的轨迹C的方程;

(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】余江人热情好客,凡逢喜事,一定要摆上酒宴,请亲朋好友、同事高邻来助兴庆贺.欢度佳节,迎亲嫁女,乔迁新居,学业有成,仕途风顺,添丁加口,朋友相聚,都要以酒示意,借酒表达内心的欢喜.而凡有酒宴,一定要划拳,划拳是余江酒文化的特色.余江人划拳注重礼节,形式多样;讲究规矩,蕴含着浓厚的传统文化和淳朴的民俗特色.在礼节上,讲究“尊老尚贤敬远客”一般是东道主自己或委托桌上一位酒量好的划拳高手来“做关”,——就是依次陪桌上会划拳的划一年数十二拳(也有半年数六拳).十二拳之后晚辈还要敬长辈一杯酒.

再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他还要敬他叔叔一杯,规则如下:前两拳只有小明猜叔赢叔叔,叔叔才会喝下这杯敬酒,且小明也要陪喝,如果第一拳小明没猜到,则小明喝下第一杯酒,继续猜第二拳,没猜到继续喝第二杯,但第三拳不管谁赢双方同饮自己杯中酒,假设小明每拳赢叔叔的概率为,问在敬酒这环节小明喝酒三杯的概率是多少( )

(猜拳只是一种娱乐,喝酒千万不要过量!)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出 (百万元)与销售额 (百万元)之间有如下对应数据:

2

4

5

6

8

30

40

50

60

70

如果之间具有线性相关关系.

(1)作出这些数据的散点图;

(2)求这些数据的线性回归方程;

(3)预测当广告费支出为9百万元时的销售额。 ( 参考数据: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(万元)有以下统计资料:

使用年限x

2

3

4

5

6

维修费用y

2

4

5

6

7

若由资料知y对x呈线性相关关系。试求:

(1)求; (2)线性回归方程

(3)估计使用10年时,维修费用是多少?

附:利用“最小二乘法”计算a,b的值时,可根据以下公式:

查看答案和解析>>

同步练习册答案