【题目】设函数, .
(Ⅰ)当时,求函数的最值;
(Ⅱ)若函数有极值点,求的取值范围.
【答案】(Ⅰ); (Ⅱ)函数有一个极值时;函数有两个极值点时.
【解析】【试题分析】(1)运用导数与 函数的单调性之间的关系进行求解;(2)依据导数的零点就是函数的极值点这一事实分析求解:
(Ⅰ)当时, , ,
当时, , 单调递增;当时, , 单调递减,
所以函数在处取得极大值,也是最大值,且.
(Ⅱ)令, ,
当时, ,函数在上递增,无极值点;
当时,设, .
①若, , ,函数在上递增,无极值点;
②若时, ,设方程的两个根为, (不妨设),
因为, ,所以, ,
所以当, ,函数递增;
当, ,函数递减;
当, ,函数递增;
因此函数有两个极值点.
当时, ,由,可得,
所以当, ,函数递增;
当时, ,函数递减;
因此函数有一个极值点.
综上,函数有一个极值时;函数有两个极值点时.
科目:高中数学 来源: 题型:
【题目】直线l过点M(﹣1,2)且与以P(﹣2,﹣3),Q(4,0)为端点的线段PQ相交,则l的斜率的取值范围是( )
A.[﹣ ,5]
B.[﹣ ,0)∪(0,5]
C.[﹣ , )∪( ,5]
D.(﹣∞,﹣ ]∪[5,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( )
A.35
B.﹣3
C.3
D.﹣0.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的, , , 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品获奖情况预测如下:
甲说:“或作品获得一等奖”
乙说:“作品获得一等奖”
丙说:“, 两项作品未获得一等奖”
丁说:“作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).
(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线与交与, ,求, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B分别是直线y=x和y=﹣x上的两个动点,线段AB的长为2 ,D是AB的中点.
(1)求动点D的轨迹C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,
①当|PQ|=3时,求直线l的方程;
②试问在x轴上是否存在点E(m,0),使 恒为定值?若存在,求出E点的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+ )升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com