精英家教网 > 高中数学 > 题目详情

【题目】直线l过点M(﹣1,2)且与以P(﹣2,﹣3),Q(4,0)为端点的线段PQ相交,则l的斜率的取值范围是(
A.[﹣ ,5]
B.[﹣ ,0)∪(0,5]
C.[﹣ )∪( ,5]
D.(﹣∞,﹣ ]∪[5,+∞)

【答案】D
【解析】解:如图所示:M(﹣1,2)且与以P(﹣2,﹣3),Q(4,0),
由题意得,所求直线l的斜率k满足kPM≤k或k≤kMQ
即 kPM =5,kMQ =﹣
∴k∈(﹣∞,﹣ ]∪[5,+∞),
故选:D.

【考点精析】根据题目的已知条件,利用直线的斜率的相关知识可以得到问题的答案,需要掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,且a1 , a4 , a13成等比数列,数列{ }是首项为1,公比为3的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an+bn}的前n项和Rn , 若不等式 ≤λ3n+n+3对n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是~分及~分的学生中选两人,记他们的成绩为,求满足“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有三所高校,其学生会学习部有干事人数分别为,现采用分层抽样的方法从这些干事中抽取名进行大学生学习部活动现状调查.

1)求应从这三所高校中分别抽取的干事人数;

2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2y2+2x-4y+3=0.

(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.

(2)从圆C外一点P(x1y1)向该圆引一条切线,切点为MO为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为a1= ,且2an+1=an(n∈N+).
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,求函数的最值;

(Ⅱ)若函数有极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考浙江理数】如图,设椭圆a1.

I)求直线y=kx+1被椭圆截得的线段长(用ak表示);

II)若任意以点A0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值

范围.

查看答案和解析>>

同步练习册答案