精英家教网 > 高中数学 > 题目详情

【题目】某市有三所高校,其学生会学习部有干事人数分别为,现采用分层抽样的方法从这些干事中抽取名进行大学生学习部活动现状调查.

1)求应从这三所高校中分别抽取的干事人数;

2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率.

【答案】(1)应从MNS这三所高校抽取的干事人数分别为321;(2.

【解析】试题分析:(1)抽样比为: 这三所高校抽取的干事人数分别为;(2)在抽取到的名干事中,来自高校名分别记为, 来自高校名分别记为,来自高校名记为,则选出名干事的所有可能结果共.事件的所有可能结果共 .

试题解析:

1)抽样比为:

故应从这三所高校抽取的干事人数分别为

2)在抽取到的名干事中,来自高校名分别记为

来自高校名分别记为,来自高校名记为

则选出名干事的所有可能结果为:

.

所选名干事来自同一高校,

事件的所有可能结果为,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=1,AD= ,P矩形内的一点,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数)

(1)设过点的直线与曲线相切于点,求的值;

(2)若函数的图象与函数的图象在内有交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,设:当时,不等式 恒成立;Q:当时,是单调函数。如果满足成立的的集合记为,满足Q成立的的集合记为,求A∩(CRB)(为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a、b、c分别是角A、B、C的对边,且
(1)求角B的大小;
(2)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列命题:

①在函数的图象中,相邻两个对称中心的距离为;②函数的图象关于点对称;③“ ”是“”的必要不充分条件;④已知命题:对任意的,都有,则是:存在,使得;⑤在中,若 ,则角等于.其中所有真命题的个数是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过点M(﹣1,2)且与以P(﹣2,﹣3),Q(4,0)为端点的线段PQ相交,则l的斜率的取值范围是(
A.[﹣ ,5]
B.[﹣ ,0)∪(0,5]
C.[﹣ )∪( ,5]
D.(﹣∞,﹣ ]∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是(
A.35
B.﹣3
C.3
D.﹣0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+ )升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

同步练习册答案