精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=1,AD= ,P矩形内的一点,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值为

【答案】
【解析】解:如图所示,在图中,设P(x,y).
B(1,0),D(0, ),C(1, ),
由AP= ,x2+y2=
则点P满足的约束条件为

即(x,y)=λ(1,0)+μ(0, ),
∴x=λ,y= μ,
∴λ+ =x+y,
由于x+y≤ = = 当且仅当x=y时取等号.
则λ+ =x+y的最大值为
所以答案是:

【考点精析】利用平面向量的基本定理及其意义对题目进行判断即可得到答案,需要熟知如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年被业界称为(虚拟现实技术)元年,未来技术将给教育、医疗、娱乐、商业、交通旅游等多领域带来极大改变,某教育设备生产企业有甲、乙两类产品,其中生产一件甲产品需团队投入15天时间, 团队投入20天时间,总费用10万元,甲产品售价为15万元/件;生产一件乙产品需团队投入20天时间, 团队投入16天时间,总费用15万元,乙产品售价为25万元/件, 两个团队分别独立运作.现某客户欲以不超过200万元订购该企业甲、乙两类产品,要求每类产品至少各3件,在期限180天内,为使企业总效益最佳,则最后交付的甲、乙两类产品数之和为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,并且直线平分圆.

(1)求圆的方程;

(2)若直线与圆交于两点,是否存在直线,使得为坐标原点),若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数)

(1)设过点的直线与曲线相切于点,求的值;

(2)函数的的导函数为,若上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2﹣lnx

1)求曲线fx)在点(1f1))处的切线方程;

2)求函数fx)的单调递减区间:

3)设函数gx=fx﹣x2+axa0,若xOe]时,gx)的最小值是3,求实数a的值.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,且a1 , a4 , a13成等比数列,数列{ }是首项为1,公比为3的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an+bn}的前n项和Rn , 若不等式 ≤λ3n+n+3对n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,若点,直线交与 ,求 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有三所高校,其学生会学习部有干事人数分别为,现采用分层抽样的方法从这些干事中抽取名进行大学生学习部活动现状调查.

1)求应从这三所高校中分别抽取的干事人数;

2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率.

查看答案和解析>>

同步练习册答案