【题目】已知圆
经过点
,
,并且直线
平分圆
.
(1)求圆
的方程;
(2)若直线
与圆
交于
两点,是否存在直线
,使得
(
为坐标原点),若存在,求出
的值;若不存在,请说明理由.
【答案】(1)
;(2) 不存在直线
.
【解析】试题分析: (1)由弦的中垂线必过圆心,所以求出线段的中垂线,与3x-2y=0的交点即为圆心,由两点间距离公式求圆的半径.(2) 设
,由向量的数量积坐标表示可知
,直线与圆组方程组,利用韦达代入上式,可求得k,同时检验判别式.
试题解析:(1)线段
的中点
,
,
故线段
的中垂线方程为
,即
.
因为圆
经过
两点,故圆心在线段
的中垂线上.
又因为直线
:
平分圆
,所以直线
经过圆心.
由
解得
,即圆心的坐标为
,
而圆的半径
,
所以圆
的方程为:
(2)设
,
将
代入方程
,得
,
即
,
由
,得
,
所以
,
.
又因为![]()
![]()
所以![]()
,解得
或
此时
式中
,没有实根,与直线
与
交于
两点相矛盾,
所以不存在直线
,使得
.
科目:高中数学 来源: 题型:
【题目】(本小题10分) 从3名男生和
名女生中任选2人参加比赛。
①求所选2人都是男生的概率;
②求所选2人恰有1名女生的概率;
③求所选2人中至少有1名女生的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知定点A(-4,0)、C(4,0),半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为
r.
(1)求圆M的方程;(2)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义平面向量之间的一种运算“⊙”如下:对任意的
,令
⊙
=mq-np,下面说法错误的是( )
A.若
与
共线,则
⊙
=0
B.
⊙
=
⊙ ![]()
C.对任意的λ∈R,有
⊙
=
⊙
)
D.(
⊙
)2+(
)2=|
|2|
|2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
测试指标 |
|
|
|
|
|
机床甲 | 8 | 12 | 40 | 32 | 8 |
机床乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);
(3)从甲、乙机床生产的零件指标在
内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某生态园将一块三角形地
的一角
开辟为水果园,已知角
为
,
的长度均大于200米,现在边界
处建围墙,在
处围竹篱笆.
(1)若围墙
、
总长度为200米,如何可使得三角形地块
面积最大?
(2)已知竹篱笆长为
米,
段围墙高1米,
段围墙高2米,造价均为每平方米100元,若
,求围墙总造价的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
对一切实数
都有
成立,且
.
(1)求
的值;
(2)求
的解析式;
(3)已知
,设
:当
时,不等式
恒成立;Q:当
时,
是单调函数。如果满足
成立的
的集合记为
,满足Q成立的
的集合记为
,求A∩(CRB)(
为全集).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com