【题目】已知函数
对一切实数
都有
成立,且
.
(1)求
的值;
(2)求
的解析式;
(3)已知
,设
:当
时,不等式
恒成立;Q:当
时,
是单调函数。如果满足
成立的
的集合记为
,满足Q成立的
的集合记为
,求A∩(CRB)(
为全集).
【答案】(1)
;(2)
;(3)
.
【解析】试题分析:(1)对抽象函数满足的函数值关系的理解和把握是解决该问题的关键,对自变量适当的赋值可以解决该问题,结合已知条件可以赋
求出
;(2)在(1)基础上赋值
可以实现求解
的解析式的问题;(3)利用(2)中求得的函数的解析式,结合恒成立问题的求解策略,即转化为相应的二次函数最值问题求出集合
,利用二次函数的单调性求解策略求出集合
.
试题解析:(1)令x=﹣1,y=1,则由已知f(0)﹣f(1)=﹣1(﹣1+2+1)
∴f(0)=﹣2
(2)令y=0,则f(x)﹣f(0)=x(x+1)
又∵f(0)=﹣2,∴f(x)=x2+x﹣2
(3)不等式f(x)+3<2x+a即x2+x﹣2+3<2x+a
也就是x2﹣x+1<a.由于当
时,
,
又x2﹣x+1=
恒成立,
故A={a|a≥1},g(x)=x2+x﹣2﹣ax=x2+(1﹣a)x﹣2 对称轴x=
,
又g(x)在[﹣2,2]上是单调函数,故有
,或
,
∴B={a|a≤﹣3,或a≥5},CRB={a|﹣3<a<5},∴A∩CRB={a|1≤a<5}.
科目:高中数学 来源: 题型:
【题目】已知圆
经过点
,
,并且直线
平分圆
.
(1)求圆
的方程;
(2)若直线
与圆
交于
两点,是否存在直线
,使得
(
为坐标原点),若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(Ⅰ)写出直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设曲线
经过伸缩变换
得到曲线
,若点
,直线
与
交与
,
,求
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段
后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
![]()
(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是
~
分及
~
分的学生中选两人,记他们的成绩为
,求满足“
”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某地区儿童的身高与体重的一组数据,我们用两种模型①
,②
拟合,得到回归方程分别为
,
,作残差分析,如表:
身高 | 60 | 70 | 80 | 90 | 100 | 110 |
体重 | 6 | 8 | 10 | 14 | 15 | 18 |
| 0.41 | 0.01 | 1.21 | -0.19 | 0.41 | |
| -0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅰ)求表中空格内的值;
(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;
(Ⅲ)残差大于
的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.
(结果保留到小数点后两位)
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市有
三所高校,其学生会学习部有“干事”人数分别为
,现采用分层抽样的方法从这些“干事”中抽取
名进行“大学生学习部活动现状”调查.
(1)求应从
这三所高校中分别抽取的“干事”人数;
(2)若从抽取的
名干事中随机选两名干事,求选出的
名干事来自同一所高校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点. ![]()
(1)求证:EF∥平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com