精英家教网 > 高中数学 > 题目详情
17.设$\overrightarrow{a}$=(sinx,sinx),$\overrightarrow{b}$=(-sinx,m+1),若$\overrightarrow{a}$•$\overrightarrow{b}$=m在区间($\frac{π}{6}$,$\frac{5π}{6}$)上有三个根,则m的范围为($\frac{1}{2}$,1).

分析 本题先对向量进行了数量积的运算,再对关于sinx的二次函数进行了因式分解,再讨论根的个数.

解答 解:$\overrightarrow{a}•\overrightarrow{b}=-si{n}^{2}x+(m+1)sinx=m$,
设f(x)=$\overrightarrow{a}•\overrightarrow{b}-m$=-sin2x+(m+1)sinx-m=(1-sinx)(sinx-m)=0,
解得sinx=1或sinx=m.
当sinx=1时,x=$\frac{π}{2}$,只有一个解.
当sinx=m时,有两个解,此时$\frac{1}{2}<m<1$,
故m的范围是$(\frac{1}{2},1)$

点评 本题考查了方程根的个数问题,运用了分类讨论的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知命题p:?x∈[1,2],x2-a2≥0.命题q:?x∈R,使得x2+(a-1)x+1<0.若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知tanα=2.
(1)求$\frac{{sin(π-α)+cos(α-\frac{π}{2})-cos(3π+α)}}{{cos(\frac{π}{2}+α)-sin(2π+α)+2sin(α-\frac{π}{2})}}$的值;
(2)求cos2α+sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A,B,C是△ABC的三个内角,向量$\overrightarrow{m}$=(-1,$\sqrt{3}$),$\overrightarrow{n}$=(cosA,sinA),且$\overrightarrow{m}$•$\overrightarrow{n}$=1
(1)求角A;
(2)求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用计算机随机产生的有序二元数组(x,y)满足-1≤x≤1,-1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a∈R,函数f(x)=ax2+x-a(-1≤x≤1).
(1)若|a|≤1,证明|f(x)|≤$\frac{5}{4}$;
(2)求a的值,使函数f(x)有最大值$\frac{17}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本政策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策.一时间“放开生育二胎”的消息引起社会的广泛关注.为了解某地区社会人士对“放开生育二胎政策”的看法,某计生局在该地区选择了 4000 人进行调查(若所选择的已婚的人数低于被调查总人数的78%,则认为本次调查“失效”),就“是否放开生育二胎政策”的问题,调查统计的结果如下表:
态度
调查人群
放开不放开无所谓
已婚人士2200人200人y人
未婚人士680人x人z人
已知在被调查人群中随机抽取1人,抽到持“不放开”态度的人的概率为0.08.
(1)现用分层抽样的方法在所有参与调查的人中抽取400人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)已知y≥710,z≥78,求本次调查“失效”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.经过双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{20}$=1的左焦点和右顶点,且面积最小的圆的标准方程为(x+1)2+y2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$+2)($\sqrt{1-{x}^{2}}$+1)的值域是[$\sqrt{2}$+2,8].

查看答案和解析>>

同步练习册答案