精英家教网 > 高中数学 > 题目详情
若a,b∈R,已知直线x+a2y+1=0与(a2+1)x-2by+3=0互相垂直,则|ab|的最小值为
 
分析:根据两条直线垂直的性质求得b=
1
2
+
1
a2
,再根据|ab|=|
a
2
+
1
a
|=|
a
2
|+|
1
a
|,利用基本
不等式求得它的最小值.
解答:解:由直线x+a2y+1=0与(a2+1)x-2by+3=0互相垂直,
可得 (a2+1)+a2(-2b)=-1,可得b=
1
2
+
1
a2

∴|ab|=|
a
2
+
1
a
|=|
a
2
|+|
1
a
|≥2
1
2
=
2

当且仅当|
a
2
|=|
1
a
|时,即a=±
2
时,取等号,
故|ab|的最小值为
2

故答案为
2
点评:本题主要考查两条直线垂直的性质,基本不等式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、命题:“已知函数f(x),若f(x+1)与f(x-1)均为奇函数,则f(x)为奇函数,”为直命题B、“x>1”是“|x|>1”的必要不充分条件C、若“p且q”为假命题,则p,q均为假命题D、命题p:”?x∈R,使得x2+x+1<0”,则?p:”?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2010年江西省高三上学期开学模拟考试文科数学卷 题型:选择题

平面直向坐标系中,O为坐标原点,已知两点A(3,1) B(-1,3)若点C满足,其中 ∈R且+=1,则点C的轨迹方程为      

    A.     B.3x+2y-11=0      C.2x-y=0       D.x+2y=5

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:数学公式+数学公式=1,(a>b>0)与双曲4x2-数学公式y2=1有相同的焦点,且椭C的离心e=数学公式,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省淮北市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1,(a>b>0)与双曲4x2-y2=1有相同的焦点,且椭C的离心e=,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

同步练习册答案