精英家教网 > 高中数学 > 题目详情

【题目】已知x∈R,用[x]表示不超过x的最大整数,记{x}=x[x],若a∈(0,1),且 ,则实数a的取值范围是

【答案】[
【解析】解:根据{x}=x[x],以及a∈(0,1),当0<a< 时,{a}=a[a]=a,{a+ }=a+ [a+ ]=a+ ,此时,{a }<{a+ };

当a= 时,{a}=a[a]=a,{a+ }=a+ [a+ ]=a+ 1=0,此时,{a}>{a+ };

当1>a 时,{a}=a[a]=a,{a+ }=a+ [a+ ]=a+ 1=a ,此时,{a}>{a+ };

故实数a的取值范围是[ ,所以答案是是[

【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面积;
(2)求AB边上的中线长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),对于x∈R,都有 ,且满足f(4)>﹣2, ,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|2a﹣x|+2x,a∈R.
(1)若a=0,判断函数y=f(x)的奇偶性,并加以证明;
(2)若函数f(x)在R上是增函数,求实数a的取值范围;
(3)若存在实数a∈[﹣2,2],使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图所表示的算法功能是输出(
A.使1×2×4×6××n≥2017成立的最小整数n
B.使1×2×4×6××n≥2017成立的最大整数n
C.使1×2×4×6××n≥2017成立的最小整数n+2
D.使1×2×4×6××n≥2017成立的最大整数n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,M,E,F,N分别为A1B1 , B1C1 , C1D1 , D1A1的中点,求证:
(1)E,F,D,B四点共面;
(2)面AMN∥平面EFDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定圆C:x2+(y﹣3)2=4,定直线m;x+3y+6=0,过A(﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,
(1)当l与m垂直时,求出N点的坐标,并证明:l过圆心C;
(2)当|PQ|=2 时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,侧面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,设平面PAD∩平面PBC=l.
(Ⅰ)求证:l∥平面ABCD;
(Ⅱ)求证:PB⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)= 有4个不相等的实根,则实数a的取值范围是(
A.(﹣ ,1)
B.( ,1)
C.( ,1)
D.(﹣1,

查看答案和解析>>

同步练习册答案