【题目】已知椭圆
抛物线
焦点均在
轴上,
的中心和
顶点均为原点
,从每条曲线上各取两个点,将其坐标记录于表中,则
的左焦点到
的准线之间的距离为( )![]()
A.![]()
B.![]()
C.1
D.2
【答案】B
【解析】解:A、∵由表可知,抛物线
焦点在
轴的正半轴,设抛物线
,则有
, ∴将
代入
,代入可得
,即
∴抛物线
的标准方程为
,则焦点坐标为
,准线方程为
, 设椭圆
,把点
代入得,
,即
∴
的标准方程为
; ∵
∴左焦点
∴
的左焦点到 C2 的准线之间的距离
1,A不符合题意![]()
B、 C1 的左焦点到 C2 的准线之间的距离
1,B符合题意;
C、 C1 的左焦点到 C2 的准线之间的距离
1,C不符合题意;
D、 C1 的左焦点到 C2 的准线之间的距离
1,D不符合题意。
故答案为:B.
过定点的椭圆方程可以设为:mX2+nY2=1;焦点在X轴上的椭圆方程可以设为:
+
=1(a>b>0);有共同焦点(
,0)的椭圆方程可以设为:
=1等。焦点在X轴的正半轴上的抛物线的标准方程可以设为:Y2=2px(p>0);焦点在X轴的负半轴上的抛物线的标准方程可以设为:Y2=-2px(p>0);焦点在X轴上的抛物线的标准方程可以设为:Y2=mX(m不等于0);焦点在Y轴上的抛物线的标准方程可以设为:X2=mY(m不等于0)等。
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,M为C上除长轴顶点外的一动点,以M为圆心,
为半径作圆,过原点O作圆M的两条切线,A、B为切点,当M为短轴顶点时∠AOB=
. (Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的右焦点为F,过点F作MF的垂线交直线x=
a于N点,判断直线MN与椭圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°. ![]()
(1)求证:BD⊥平面ADG;
(2)求此多面体的全面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有10支队伍参加篮球比赛,规定:比赛采取单循环比赛制,即每支队伍与其他9支队伍各比赛一场;每场比赛中,胜方得2分,负方得0分,平局双方各得1分.下面关于这10支队伍得分的叙述正确的是( )
A.可能有两支队伍得分都是18分
B.各支队伍得分总和为180分
C.各支队伍中最高得分不少于10分
D.得偶数分的队伍必有偶数个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在海岸线
一侧有一休闲游乐场,游乐场的前一部分边界为曲线段
,该曲线段是函数
,
的图像,图像的最高点为
.边界的中间部分为长1千米的直线段
,且
.游乐场的后一部分边界是以
为圆心的一段圆弧
.![]()
(1)求曲线段
的函数表达式;
(2)曲线段
上的入口
距海岸线
最近距离为1千米,现准备从入口
修一条笔直的景观路到
,求景观路
长;
(3)如图,在扇形
区域内建一个平行四边形休闲区
,平行四边形的一边在海岸线
上,一边在半径
上,另外一个顶点P在圆弧
上,且
,求平行四边形休闲区
面积的最大值及此时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】宿州市某登山爱好者为了解山高y(百米)与气温x(℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表,由表中数据,得到线性回归方程为y=﹣2x+a,由此估计山高为72(百米)处的气温为( )
气温x(℃) | 18 | 13 | 10 | ﹣1 |
山高y(百米) | 24 | 34 | 38 | 64 |
A.﹣10
B.﹣8
C.﹣6
D.﹣4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和记为Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)当t为何值时,数列{an}为等比数列?
(2)在(1)的条件下,若等差数列{bn}的前n项和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比数列,求Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( ) ①对于命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为
=1.23x+0.08;
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.
A.1
B.3
C.2
D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com