精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和Sn满足S3=21,S5=25.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{an}的前n项和Sn
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:由已知条件利用等差数列的前n项和公式列出方程组求出首项和公差,由此能求出数列的通项公式和前n项和公式.
解答: 解:(Ⅰ)设数列{an}的首项为a1,公差为d,
∵S3=21,S5=25,
3a1+
3×2
2
d=21
5a1+
5×4
2
d=25

解得a1=9,d=-2.….(6分)
故an=11-2n.….(8分)
(Ⅱ)∵a1=9,d=-2.
Sn=na1+
n(n-1)
2
d=10n-n2
….(13分)
点评:本题考查等差数列的通项公式和前n项和公式的求法,是基础题,解题时要认真审题,注意等差数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x; ③f(x)=
1
x
;④f(x)=ln|x|,其中是“保等比数列函数”的序号为(  )
A、①②B、③④C、①③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足xf′(x)+f(x)=
ex
x
,f(1)=e,则当x>0时,f(x)(  )
A、有极大值,无极小值
B、有极小值,无极大值
C、既有极大值,又有极小值
D、既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx,g(x)=-x2+ax-1,对一切x∈(0,+∞),3f(x)≥g(x)恒成立,则实数a的取值范围是(  )
A、(-∞,
13
+3ln
13
-3
2
B、(-∞,4]
C、(-∞,6]
D、[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=6cos2
ωx
2
+
3
sinωx-3(ω>0)的部分图象如图所示.A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(1)若x∈[0,1],求函数f(x)的值域;
(2)若f(x0)=
8
3
5
,且x0∈(-
10
3
2
3
),求cos(
πx0
4
+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=
1
2
CD=2,PA=2,E是PC的中点.
(1)证明:BE∥平面PAD;
(2)求直线AE与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+2,(x≤-1)
x2,(-1<x<2)
2x,(x≥2)

(1)求f[f(1.5)]值;
(2)若f(x)=3,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),曲线C的参数方程为
x=2+cosθ
y=sinθ
(θ为参数).
(1)若在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
3
),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求点Q到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且a1=
1
2
,an+1=
n+1
2n
an
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=n(2-Sn),n∈N*,若集合M={n|bn≥λ,n∈N*}恰有5个元素,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案