精英家教网 > 高中数学 > 题目详情
3.已知点A是抛物线y2=4$\sqrt{3}$x上一点,F为其焦点,以F为圆心,以|FA|为半径的圆交准线于B,C两点,且△FBC为正三角形,则点A到抛物线准线的距离为4.

分析 根据抛物线的性质计算F到准线的距离,根据等边三角形的性质得出BF即AF的长,在利用抛物线的性质得出点A到抛物线准线的距离.

解答 解抛物线的交点F($\sqrt{3}$,0),准线方程为:x=-$\sqrt{3}$,
设准线与x轴交点为D,则BD=2$\sqrt{3}$,
∵△FBC是正三角形,∴|BF|=4,
∴|AF|=|BF|=4.
∵A在抛物线上,∴点A到抛物线准线的距离为|AF|=4.
故答案为:4.

点评 本题考查了抛物线的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知集合A={x|-2<x<2},集合B为自然数集,则A∩B={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.{an}为等差数列,前n项和为Sn,若S11=66,则4a3+3a6+2a12=(  )
A.27B.54C.99D.108

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx+ax2+bx.(a,b∈R).
(1)曲线y=f(x)上一点A(1,2),若在点A处的切线与直线2x-y-10=0平行,求a,b的值;
(2)设函数y=f(x)的导函数为y=f′(x),若f′(2)=$\frac{1}{2}$,且函数y=f(x)在(0,+∞)是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=sinx+2{cos^2}\frac{x}{2}-1$,$g(x)=2\sqrt{2}sinxcosx$,下列结论正确的是(  )
A.函数f(x)与g(x)的最大值不同
B.函数f(x)与g(x)在$(\frac{3π}{4},\;\;\frac{5π}{4})$上都为增函数
C.函数f(x)与g(x)的图象的对称轴相同
D.将函数f(x)的图象上各点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,再通过平移能得到g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过抛物线y2=8x的焦点作一条直线与抛物线相交于A、B两点,且这两点的横坐标之和为9,则满足条件的直线(  )
A.有且只有一条B.有两条C.有无穷多条D.必不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=(C${\;}_{10}^{1}$x+1)(C${\;}_{10}^{2}$x+1)…(C${\;}_{10}^{7}$x+1)(C${\;}_{10}^{8}$x+1),则f′(0)=1012(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过C:y2=8x抛物线上一点P(2,4)作倾斜角互补的两条直线,分别与抛物线相交于A、B两点,则直线AB的斜率是(  )
A.-$\frac{1}{2}$B.-1C.-$\frac{2}{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:
12345678910
11.612.213.213.914.011.513.114.511.714.3
12.313.314.311.712.012.813.213.814.112.5
(1)请完成样本数据的茎叶图(在答题卷中);如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论);
(2)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率;
(3)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在区间[11,15](单位:秒)之内,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.

查看答案和解析>>

同步练习册答案