精英家教网 > 高中数学 > 题目详情
6.设A、B是抛物线y2=2x上异于原点的不同两点,则$\overrightarrow{OA}•\overrightarrow{OB}$的最小值为(  )
A.1B.-1C.-2D.-4

分析 设直线AB的方程为x=my+t,代入抛物线方程,消去x,得到y的方程,设A($\frac{{{y}_{1}}^{2}}{2}$,y1),B($\frac{{{y}_{2}}^{2}}{2}$,y2),运用韦达定理和判别式大于0,结合向量的数量积的坐标表示,转化为t的函数,由配方即可得到所求最小值.

解答 解:设直线AB的方程为x=my+t,
代入抛物线y2=2x,可得
y2-2my-2t=0,
由题意可得△=4m2+8t>0,且t≠0,
设A($\frac{{{y}_{1}}^{2}}{2}$,y1),B($\frac{{{y}_{2}}^{2}}{2}$,y2),
则y1+y2=2m,y1y2=-2t,
可得$\overrightarrow{OA}•\overrightarrow{OB}$=$\frac{({y}_{1}{y}_{2})^{2}}{4}$+y1y2=t2-2t=(t-1)2-1,
当t=1时,$\overrightarrow{OA}•\overrightarrow{OB}$取得最小值-1.
故选:B.

点评 本题考查向量的数量积的最值的求法,直线与抛物线方程联立,运用韦达定理和向量数量积的坐标表示,正确设出抛物线上点的坐标,运用二次函数的最值求法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=$\frac{1}{4}$CD,下列结论:
①∠BAE=30°,②△ABE~△AEF,③AE⊥EF,④△ADF~△ECF.
其中正确的有②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-cos 2x+$\frac{1}{2}$,x∈R.
(1)求函数f(x)的最大值,及取最大值时x的值;
(2)设△ABC的内角A,B,C的对边分别为a,b,c且c=$\sqrt{3}$,f(C)=1,若sinB=2sinA,求A,B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有(  )
A.24种B.9种C.3种D.26种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知圆O1与O2相交于A、B两点,△AO2B为正三角形,|AO2|=2$\sqrt{3}$,且|O1O2|=4,则阴影部分的面积为(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.现有两本相同的数学书,两本相同的英语书(记a,b分别表示数学书和英语书),从中取出两本书送给小朋友,则所有不同的选法为aa,ab,bb(用a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设向量$\overrightarrow{a}$=(1,4cosx),b=(4$\sqrt{3}$sinx,1),x∈R.
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$共线,求sin2x;
(2)设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且f(x)在[0,π]上的值域为[tanα,tanβ],求tan(2α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.方程$\frac{x|x|}{16}$+$\frac{y|y|}{9}$=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x存在零点; 
③函数y=f(x)的值域是R; 
④f(x)的图象不经过第一象限;
其中正确的命题序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从0,1,2,3,4,5,6,7,8,9这10个数字中取出4个数字,试问:
(1)有多少个没有重复数字的排列?
(2)能组成多少个没有重复数字的四位数?
(3)能组成多少个大于3000的没有重复数字的四位偶数?

查看答案和解析>>

同步练习册答案