精英家教网 > 高中数学 > 题目详情
已知圆C过点(11,0),且与圆x2+y2=25外切于点(3,4).
(1)求两个圆的内公切线的方程(如果两个圆位于公切线的异侧,则这条公切线叫做两个圆的内公切线);
(2)求圆C的方程.
(1)∵切点M(3,4),则由题意可得,两个圆的内公切线经过点M,且和OM垂直.
∵KOM=
4-0
3-0
=
4
3
∴两个圆的内公切线的斜率为-
3
4
,故两个圆的内公切线方程为 y-4=-
3
4
(x-3),
化简可得 3x+4y-25=0.
(2)设A(11,0),切点M(3,4),∵圆x2+y2=25的圆心为原点O,圆C和它相外切,
再根据两个圆的圆心连线经过切点,∴可用点斜式求得直线MC(即直线MO)的方程是 4x+3y=0.
由于线段AM的中点为(7,2),AM的斜率为-
1
2
,故AM的中垂线的斜率为2,用点斜式求得线段AM的中垂线方程是 y=2x-12.
解方程组
4x+3y=0
y=2x-12
,求得C点坐标(18,24),半径的平方为r2=|AC|2=625,
故圆C方程是(x-18)2+(y-24)2=625.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程,并判断M(6,9),Q(5,3)是在圆上?圆外?圆内?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A、B两点,且这两点平分圆N的圆周 ,求圆M的半径最小时的圆M的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x-3)2+(y-4)2=1.
(1)若过点C1(-1,0)的直线l被圆C2截得的弦长为
6
5
,求直线l的方程;
(2)设动圆C同时平分圆C1的周长、圆C2的周长.
①证明:动圆圆心C在一条定直线上运动;
②动圆C是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,A,B是直线l上的两点,且AB=2.两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧AC,CB与线段AB围成图形面积S的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5sinθ)2+(y-5cosθ)2=1(θ∈R),过圆C上任意一点P作圆M的两条切线PE、PF,切点分别为E、F,则
PE
PF
的最小值是(  )
A.6B.
56
9
C.7D.
65
9

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,A(x,y),B(-2,0),C(2,0),给出△ABC满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:
条件方程
①△ABC周长为10;
②△ABC面积为10;
③△ABC中,∠A=90°
E1:y2=25;
E2:x2+y2=4(y≠0);
E3
x2
9
+
y2
5
=1(y≠0)
则满足条件①、②、③的轨迹方程分别用代号表示为(  )
A.E3,E1,E2B.E1,E2,E3C.E3,E2,E1D.E1,E3,E2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a≠b,且ab≠0,则曲线bx-y+a=0和ax2+by2=ab的形状大致是如图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知恒过定点(1,1)的圆C截直线x=-1所得弦长为2,则圆心C的轨迹方程为______.

查看答案和解析>>

同步练习册答案