精英家教网 > 高中数学 > 题目详情
已知恒过定点(1,1)的圆C截直线x=-1所得弦长为2,则圆心C的轨迹方程为______.
设圆心为C(x,y),定点为M(1,1),连结CM.设圆C交直线x=-1于A、B两点,
取AB的中点D,连结CD,则CD⊥AB,
∵Rt△ACD中,|CD|=x+1,|AD|=
1
2
|AB|=1,
∴|AC|=
(x+1)2+12

又∵点A、M在圆C上,可得|AC|=|MC|=
(x-1)2+(y-1)2

(x+1)2+12
=
(x-1)2+(y-1)2

两边平方,整理得y2=4x+2y,即为圆心C的轨迹方程.
故答案为:y2=4x+2y
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆C过点(11,0),且与圆x2+y2=25外切于点(3,4).
(1)求两个圆的内公切线的方程(如果两个圆位于公切线的异侧,则这条公切线叫做两个圆的内公切线);
(2)求圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy内有两定点M(-1,0),N(1,0),点P满足|
PM
|+|
PN
|=4
,则动点P的轨迹方程是______,|
PM
|
的最大值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(0,
3
)
和圆O1x2+(y+
3
)2=16
,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点M(x,y)在曲线C上,点M与定点F(1,0)的距离和它到直线m:x=4的距离的比是
1
2

(1)求曲线C的方程;
(2)点E(-1,0),∠EMF的外角平分线所在直线为l,直线EN垂直于直线l,且交FM的延长线于点N.试求点P(1,8)与点N连线的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)若直线l:y=kx+m与曲线C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知坐标平面内⊙C:(x+1)2+y2=
1
4
,⊙D:(x-1)2+y2=
49
4
.动圆P与⊙C外切,与⊙D内切.
(1)求动圆圆心P的轨迹C1的方程;
(2)若过D点的斜率为2的直线与曲线C1交于两点A、B,求AB的长;
(3)过D的动直线与曲线C1交于A、B两点,线段AB中点为M,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C1:x2+y2-4x+3=0,圆C2:x2+y2-8y+15=0,动点P到圆C1,C2上点的距离的最小值相等.
(1)求点P的轨迹方程;
(2)直线l:mx-(m2+1)y=4m,m∈R,是否存在m值使直线l被圆C1所截得的弦长为
6
3
,若存在,求出m值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,点P为双曲线上任意一点,过F1作∠F1PF2的平分线的垂线,垂足为Q,则点Q的轨迹方程为(  )
A.x2+y2=a2B.x2+y2=b2C.x2-y2=a2D.x2-y2=b2

查看答案和解析>>

同步练习册答案