精英家教网 > 高中数学 > 题目详情
已知点A(0,
3
)
和圆O1x2+(y+
3
)2=16
,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.
由题意,可得
圆O1x2+(y+
3
)2=16
是以O1(0,-
3
)为圆心,半径r=4的圆
∵点P在半径O1M上,且|PM|=|PA|,
∴|O1P|+|PA|=|O1P|+|PM|=|O1M|=4,
可得点P到A(0,
3
),O1(0,-
3
)的距离之和为4(常数)
因此,点P的轨迹是以点A(0,
3
),O1(0,-
3
)为焦点的椭圆,
∵焦点在y轴上,c=
3
且2a=4,
∴a=2得a2=4,b2=a2-c2=4-3=1,椭圆方程为x2+
y2
4
=1

综上所述,点P的轨迹方程为x2+
y2
4
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x-3)2+(y-4)2=1.
(1)若过点C1(-1,0)的直线l被圆C2截得的弦长为
6
5
,求直线l的方程;
(2)设动圆C同时平分圆C1的周长、圆C2的周长.
①证明:动圆圆心C在一条定直线上运动;
②动圆C是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a≠b,且ab≠0,则曲线bx-y+a=0和ax2+by2=ab的形状大致是如图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点A(-2,0),B(2,0),及定点F(1,0),定直线l:x=4,不在x轴上的动点M到定点F的距离是它到定直线l的距离的
1
2
倍,设点M的轨迹为E,点C是轨迹E上的任一点,直线AC与BC分别交直线l与点P,Q.
(1)求点M的轨迹E的方程;
(2)试判断以线段PQ为直径的圆是否经过定点F,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(-1,0),B(2,0),动点M(x,y)满足
|MA|
|MB|
=
1
2
,设动点M的轨迹为C.
(1)求动点M的轨迹方程,并说明轨迹C是什么图形;
(2)求动点M与定点B连线的斜率的最小值;
(3)设直线l:y=x+m交轨迹C于P,Q两点,是否存在以线段PQ为直径的圆经过A?若存在,求出实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知恒过定点(1,1)的圆C截直线x=-1所得弦长为2,则圆心C的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A(-2,0),B(2,0),动点P(x,y)满足
PA
PB
=x2
,则动点P的轨迹为(  )
A.椭圆B.双曲线
C.抛物线D.两条平行直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,梯形ABCD中,ABCD,且AB⊥平面α,AB=2BC=2CD=4,点P为α内一动点,且∠APB=∠DPC,则P点的轨迹为(  )
A.直线B.圆C.椭圆D.双曲线

查看答案和解析>>

同步练习册答案