精英家教网 > 高中数学 > 题目详情
6.下列函数中,周期为2π的是(  )
A.y=sin$\frac{x}{2}$B.y=|sin$\frac{x}{2}$|C.y=cos2xD.y=|sin2x|

分析 根据函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,函数y=|Asin(ωx+φ)|的周期为$\frac{1}{2}$•$\frac{2π}{ω}$,得出结论.

解答 解:由于函数y=sin$\frac{x}{2}$的最小正周期为$\frac{2π}{\frac{1}{2}}$=4π,故排除A;
根据函数y=|sin$\frac{x}{2}$|的最小正周期为$\frac{1}{2}•\frac{2π}{\frac{1}{2}}$=2π,故B中的函数满足条件;
由于y=cos2x的最小正周期为$\frac{2π}{2}$=π,故排除C;
由于y=|sin2x|的最小正周期为$\frac{1}{2}$•$\frac{2π}{2}$=$\frac{π}{2}$,故排除D,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,函数y=|Asin(ωx+φ)|的周期为$\frac{1}{2}$•$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P($\frac{\sqrt{3}}{2}$,$\sqrt{3}$),且离心率e=$\frac{1}{2}$.
(1)求椭圆C的方程.
(2)若F1、F2为椭圆的两个焦点,A、B为椭圆的两点,且$\overrightarrow{A{F}_{1}}$=$\frac{1}{2}$$\overrightarrow{B{F}_{2}}$,求直线AF1的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正方体ABCD-A′B′C′D′中:BC′与CD′所成的角为600

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=2cos(x+\frac{π}{3})[sin(x+\frac{π}{3})-\sqrt{3}cos(x+\frac{π}{3})]$.
(1)求f(x)的值域和最小正周期;
(2)方程f(x)=m在$x∈[0,\frac{π}{6}]$内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的导数.
(1)$y=\frac{e^x}{x}$; 
 (2)y=(2x2-1)(3x+1);    
(3)$y=sin({x+1})-cos\frac{x}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,则D1O与平面ABCD所成的角的余弦值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.
(Ⅲ)若关于x的方程f(x)=b恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(x,-6),若向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,则实数x的值为(  )
A.-3B.-12C.3D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.p>0是抛物线y2=2px的焦点落在x轴上的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案