【题目】甲、乙两位打字员在两台电脑上各自输入, 两种类型的文件的部分文字才能使这两种类型的文件成为成品.已知文件需要甲输入0.5小时,乙输入0.2小时; 文件需要甲输入0.3小时,乙输入0.6小时.在一个工作日内,甲至多只能输入6小时,乙至多只能输入8小时, 文件每份利润为60元, 文件每份利润为80元,则甲、乙两位打字员在一个工作日内获得的最大利润是__________元.
科目:高中数学 来源: 题型:
【题目】某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料分别为A、B两种规格的金属板,每张面积分别为2m2与3m2 . 用A种规格的金属板可造甲种产品3个,乙种产品5个;用B种规格的金属板可造甲、乙两种产品各6个.问A、B两种规格的金属板各取多少张,才能完成计划,并使总的用料面积最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的偶函数f(x)满足对于任意实数x,都有f(1+x)=f(1﹣x),且当0≤x≤1时,f(x)=3x+1 .
(1)求证:函数f(x)是周期函数;
(2)当x∈[1,3]时,求f(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系内,设M(x1 , y1)、N(x2 , y2)为不同的两点,直线l的方程为ax+by+c=0,设 .有下列四个说法:
①存在实数δ,使点N在直线l上;
②若δ=1,则过M、N两点的直线与直线l平行;
③若δ=﹣1,则直线l经过线段MN的中点;
④若δ>1,则点M、N在直线l的同侧,且直线l与线段MN的延长线相交.
上述说法中,所有正确说法的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题: ①函数f(x)=x+ 的最小值为6;
②不等式 <1的解集是{x|﹣1<x<1};
③若a>b>﹣1,则 > ;
④若a>b,c>d,则ac>bd.
所有正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Sn为公差不为0的等差数列{an}的前n项和,且a1=1,S1 , S2 , S4成等比数列.
(1)求数列{an}的通项公式;
(2)设 ,求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , 已知a3=3,S11=0.
(1)求数列{an}的通项公式;
(2)当n为何值时,Sn最大,并求Sn的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com