精英家教网 > 高中数学 > 题目详情

【题目】已知Sn为公差不为0的等差数列{an}的前n项和,且a1=1,S1 , S2 , S4成等比数列.
(1)求数列{an}的通项公式;
(2)设 ,求数列{bn}的前n项和.

【答案】
(1)解:∵Sn为公差不为0的等差数列{an}的前n项和,且a1=1,S1,S2,S4成等比数列,

∴由已知,得

整理得

又由a1=1,d≠0,解得d=2,

故an=1+(n﹣1)×2=2n﹣1.n∈N*


(2)解:∵ ,an=2n﹣1,

=

∴数列{bn}的前n项和:

=

=

= ,n∈N*


【解析】(1)由已知,得 ,利用等差数列前n项和公式求出首项和公差,由此能求出an . (2) = ,由此利用裂项法能求出数列{bn}的前n项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器和正四棱台形玻璃容器的高均为32cm,容器的底面对角线AC的长为10cm,容器的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器和容器中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将l放在容器中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

(2)将l放在容器中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位打字员在两台电脑上各自输入 两种类型的文件的部分文字才能使这两种类型的文件成为成品.已知文件需要甲输入0.5小时,乙输入0.2小时; 文件需要甲输入0.3小时,乙输入0.6小时.在一个工作日内,甲至多只能输入6小时,乙至多只能输入8小时, 文件每份利润为60元, 文件每份利润为80元,则甲、乙两位打字员在一个工作日内获得的最大利润是__________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(1,2),N(3,2),点F是直线l:y=x﹣3上的一动点,当∠MFN最大时,过点M,N,F的圆的方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗质地均匀的骰子先后抛掷2次,观察其向上的点数,分别记为x,y.
(1)若记“x+y=8”为事件A,求事件A发生的概率;
(2)若记“x2+y2≤12”为事件B,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 为参数, ),在以坐标原点为极点, 轴的非负半轴为极轴的极坐标系中,曲线 .

(1)试将曲线化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;

(2)当时,两曲线相交于 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,A1C1⊥B1D1 , E,F分别是AB,BC的中点.

(1)求证:EF∥平面A1BC1
(2)求证:平面D1DBB1⊥平面A1BC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(0,1)、B(0,2)、C(4t,2t2﹣1)(t∈R),⊙M是以AC为直径的圆,再以M为圆心、BM为半径作圆交x轴交于D、E两点.
(Ⅰ)若△CDE的面积为14,求此时⊙M的方程;
(Ⅱ)试问:是否存在一条平行于x轴的定直线与⊙M相切?若存在,求出此直线的方程;若不存在,请说明理由;
(Ⅲ)求 的最大值,并求此时∠DBE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:

分数段

频数

选择题得分24分以上(含24分)

5

2

10

4

15

12

10

6

5

4

5

5

(Ⅰ)若从分数在 的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;

(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案