精英家教网 > 高中数学 > 题目详情
已知:
a
=(2cosx,sinx),
b
=(
3
cosx,2cosx).设函数f(x)=
a
b
-
3
.(x∈R)
求:(1)f(x)的最小正周期;
(2)f(x)的单调增区间;
(3)若x∈[-
π
4
π
4
]时,求f(x)的值域.
f(x)=
a
b
3
=2
3
cos2x+2sinxcosx-
3

=sin2x+
3
(2cos2x-1)
=sin2x+
3
cos2x
=2sin(2x+
π
3
)

(1)函数f(x)的最小正周期最小正周期为T=
2

(2)由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2

2kπ-
6
≤2x≤2kπ+
π
6
kπ-
12
≤x≤kπ+
π
12
,??(k∈Z)

∴函数f(x)的单调增区间为[kπ-
12
,kπ+
π
12
],?(k∈Z)

(3)∵x∈[-
π
4
π
4
]
,∴2x∈[-
π
2
π
2
]

2x+
π
3
∈[-
π
6
6
]
,∴sin(2x+
π
3
)∈[-
1
2
,1]

∴f(x)∈[-1,2]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若向量
a
b
的夹角为60°,则直线xcosα-ysinα+
1
2
=0
与圆(x-cosβ)2+(y+sinβ)2=
1
2
的位置关系是(  )
A、相交B、相切
C、相离D、相交且过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
a
=( 2cosα,2sinα),
.
b
=( 3sosβ,3sinβ),向量
.
a
.
b
的夹角为30°则cos(α-β)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若
a
b
的夹角为60°,则直线2xcosα-2ysinα+1=0与圆(x-cosβ)2+(y+sinβ)2=1的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),
a
b
的夹角为60°,则直线xcosα-ysinα+1=0与圆(x-cosβ)2+(y+sinβ)2=1的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)已知向量
a
=(2cosωx,-1),
b
=(
3
sinωx+cosωx,1)(ω>0),函数f(x)=
a
b
的最小正周期为π.
(I)求函数f(x)的表达式及最大值;
(Ⅱ)若在x∈[0,
π
2
]
上f(x)≥a恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案