【题目】如图,已知圆柱内有一个三棱锥
,
为圆柱的一条母线,
,
为下底面圆
的直径,
.
(Ⅰ)在圆柱的上底面圆内是否存在一点
,使得
平面
?证明你的结论.
(Ⅱ)设点
为棱
的中点,
,求四棱锥
体积的最大值.
![]()
科目:高中数学 来源: 题型:
【题目】已知空间几何体
是由圆柱切割而成的阴影部分构成,其中
,
为下底面圆直径的两个端点,
,
为上底面圆直径的两个端点,且
,圆柱底面半径是1,高是2,则空间几何体
可以无缝的穿过下列哪个图形( )
![]()
A.椭圆B.等腰直角三角形C.正三角形D.正方形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年1月10日,引发新冠肺炎疫情的COVID-9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为
,假设每次接种后当天是否出现抗体与上次接种无关.
(1)求一个接种周期内出现抗体次数
的分布列;
(2)已知每天接种一次花费100元,现有以下两种试验方案:
①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为
元;
②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为
元.
比较随机变量
和
的数学期望的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).
![]()
①35.6%的客户认为态度良好影响他们的满意度;
②156位客户认为使用礼貌用语影响他们的满意度;
③最影响客户满意度的因素是电话接起快速;
④不超过10%的客户认为工单派发准确影响他们的满意度.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
中,
底面
,点
是棱
的中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若
,
,在棱
上是否存在点
,使二面角
的大小为
,若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2
。
(1)求椭圆的方程;
(2)如图,斜率为k的直线l过椭圆的右焦点F,且与椭圆交与A,B两点,以线段AB为直径的圆截直线x=1所得的弦的长度为
,求直线l的方程。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
.(
为参数)以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,点
的极坐标为
,直线
的极坐标方程为
.
(1)求
的直角坐标和 l的直角坐标方程;
(2)把曲线
上各点的横坐标伸长为原来的
倍,纵坐标伸长为原来的
倍,得到曲线
,
为
上动点,求
中点
到直线
距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com