【题目】已知椭圆
的离心率为
,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2
。
(1)求椭圆的方程;
(2)如图,斜率为k的直线l过椭圆的右焦点F,且与椭圆交与A,B两点,以线段AB为直径的圆截直线x=1所得的弦的长度为
,求直线l的方程。
![]()
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2alnx.
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(2)若函数
在[1,2]上是减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.
![]()
(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;
(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;
(3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市在节日期间进行有奖促销,凡在该超市购物满
元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有
只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励
元;共两只球都是绿色,则奖励
元;若两只球颜色不同,则不奖励.
(1)求一名顾客在一次摸奖活动中获得
元的概率;
(2)记
为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点
,其焦点与双曲线
的焦点重合,且椭圆
的短轴的两个端点与其一个焦点构成正三角形.
(1)求椭圆
的方程;
(2)过双曲线
的右顶点
作直线
与椭圆
交于不同的两点
.设
,当
为定值时,求
的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图象向右平移
个单位后得到函数
的图象,则( )
A.
图象关于直线
对称 B.
图象关于点
中心对称
C.
在区间
单调递增 D.
在区间
上单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(a∈R,e为自然对数的底数),
,其中
在x=0处的切线方程为y=bx.
(1)求a,b的值;
(2)求证:
;
(3)求证:
有且仅有两个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
(
为参数,实数
),曲线
(
为参数,实数
).在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
与
交于
,
两点,与
交于
,
两点.当
时,
;当
时,
.
(Ⅰ)求
,
的值及曲线
和
极坐标方程;
(Ⅱ)求
的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:
(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%)
(2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%).已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为 元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com