精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面底面,且△PAD为等腰直角三角形,,E、F分别为PC、BD的中点.

(1)求证:EF//平面PAD;
(2)求证:平面平面 .
详见解析

试题分析:(1)要证//平面,可证明与平面内的一条直线平行,边结由中位线定理得这条直线就是.(2)利用面面垂直的性质可由面面垂直(侧面底面)得线面垂直(平面),进而得到线线垂直(),再结合线线垂直,又得到线面垂直平面,证明.平面平面可通过平面证明.
试题解析:(1)证明:连接
因为是正方形,的中点,所以过点,且也是 的中点,
因为的中点,所以中,是中位线,所以 
因为平面平面,所以平面
(2)因为侧面底面,
所以平面
所以
又因为,
所以平面,
因为平面,
所以面平面
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,棱柱中,四边形是菱形,四边形是矩形,.

(1)求证:平面
(2)求点到平面的距离;
(3)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,点上一点.

⑴若点的中点,求证平面
⑵若平面平面,求证.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在四棱锥中, 底面四边形是直角梯形, ,,.

(1)求证:
(2)求直线与底面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形所在的平面与正方形所在的平面相互垂直,的中点.

(1)求证:∥平面
(2)求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在四面体ABCD中,有如下结论:
①若,则
②若分别是的中点,则的大小等于异面直线所成角的大小;
③若点是四面体外接球的球心,则在面上的射影为的外心;
④若四个面是全等的三角形,则为正四面体.
其中所有正确结论的序号是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面,下列四个命题中正确的是
A.若所成的角相等,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与平面,给出下列三个结论:①若,则
②若,则; ③若,则
其中正确的个数是  (    )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条不重合的直线mn和两个不重合的平面αβ,有下列命题:
①若mnmα,则nα;②若mαnβmn,则αβ;③若mn是两条异面直线,m?αn?βmβnα,则αβ;④若αβαβmn?βnm,则nα;其中正确命题的个数是(  ).
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案