精英家教网 > 高中数学 > 题目详情
如图,棱柱中,四边形是菱形,四边形是矩形,.

(1)求证:平面
(2)求点到平面的距离;
(3)求直线与平面所成角的正切值.
(1)证明过程详见试题解析;(2)点到平面的距离为;(3)直线与平面所成角的正切值为.

试题分析:(1)先证明,又,∴平面;(2)先求出,即可知点到面的距离,而点到面的距离相等,所以点到平面的距离为;(3)先找出在面的射影为直线与平面所成线面角,放在中即可求出直线与平面所成角的正切值为.
试题解析:(1)     4分
(2)解:,所以点到面的距离相等,   6分
设点到面的距离相等,则
,∴为正三角形,   7分
                                        8分

,∴,点到平面的距离为.                           9分
(3)解:过,垂足为                                          10分
                                12分
在面的射影,为直线与平面所成线面角,   13分
中,
所以直线与平面所成角的正切值为.                            14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面
(Ⅰ)若分别为中点,求证:∥平面
(Ⅱ)求证:
(Ⅲ)若,求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知多面体ABCDFE中, 四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分别为AB、FC的中点,且AB = 2,AD =" EF" = 1.

(1)求证:AF⊥平面FBC;
(2)求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 已知四边形ABCD和BCEG均为直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求证: ECCD
(2)求证:AG∥平面BDE
(3)求:几何体EG-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥PABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
 
(1)求证:PCBD
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥EBCD的体积取到最大值.
①求此时四棱锥EABCD的高;
②求二面角ADEB的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面底面,且△PAD为等腰直角三角形,,E、F分别为PC、BD的中点.

(1)求证:EF//平面PAD;
(2)求证:平面平面 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三条不重合的直线m,n,l 和两个不重合的平面α,β ,下列命题正确的是:(  )
A.若m//n,nα,则m//α
B.若α⊥β, αβ="m," n⊥m ,则n⊥α.
C.若l⊥n ,m⊥n,则l//m
D.若l⊥α,m⊥β, 且l⊥m ,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图将正方形沿对角线折成直二面角,有如下四个结论:


②△是等边三角形;
所成的角为60°;
与平面所成的角为60°.
其中错误的结论是(    )
A.①B.②C.③D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知异面直线ab分别在平面αβ内,且αβc,那么直线c一定(  )
A.与ab都相交
B.只能与ab中的一条相交
C.至少与ab中的一条相交
D.与ab都平行

查看答案和解析>>

同步练习册答案