精英家教网 > 高中数学 > 题目详情
设四面体的全面积为S,四个面面积最大者记为S1,求
S
S1
的取值范围.
考点:棱柱、棱锥、棱台的侧面积和表面积
专题:空间位置关系与距离
分析:由题意,S1+S2+S3+S4=S≤4S1,当且仅当S1=S2=S3=S4时取等号,棱锥的高趋近0时,
S
S1
的值趋近2,由此可得结论.
解答: 解:∵四面体的四个面的面积分别为S1,S2,S3,S4
则S表示它们的和.
∴S1+S2+S3+S4=S≤4S1,当且仅当S1=S2=S3=S4时取等号,
S
S1
≤4
当棱锥的高趋近0时,
S1应为底面,且S2+S3+S4的值趋近S1
即S的值趋近2S1
S
S1
的值趋近2,
∴2<
S
S1
≤4,
S
S1
的取值范围为(2,4]
点评:本题考查的知识点是棱锥的结构特征,其中根据已知条件和棱锥的结构特征,判断出S1与S比值的范围是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=an-2(n∈N+),它的前n项和为Sn,“a1=6”则是“Sn的最大值是S3”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

投掷质地均匀的红、蓝两颗骰子,观察出现的点数,并记红色骰子出现的点数为m,蓝色骰子出现的点数为n.试就方程组
x+2y=2
mx+ny=3
解答下列问题.
(Ⅰ)求方程组只有一个解的概率;
(Ⅱ)求方程组只有正数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C对应的边分别是a,b,c,且a=4
3
,b=3
2
,∠A=2∠B.
(Ⅰ)求cosB的值;
(Ⅱ)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校的组织学生参加体育而课堂训练,三个项目的人数分布如下表(每名学生只能参加一项):
短跑 长跑 跳高
男生 30 3 28
女生 25 2 m
学校要对这三个项目学生参加情况进行抽样调查,按分层抽样的方法从三个项目中抽取18人,结果参加跳高的项目被抽出了6人.
(1)求跳高项目中女生有多少人;
(2)从参加长跑的3名男生和2名女生中随机选出2人参加比赛,求这两名同学是一名男生和一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,锐角α,β的终边分别与单位圆交于A、B两点.
(Ⅰ)如果点A的纵坐标为
3
5
,点B的横坐标为
5
13
,求cos(α-β);
(Ⅱ)已知点C(2
3
,-2),
OA
OC
=2
2
,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:

从6名短跑运动员中选出4人参加4×100m接力赛.试求满足下列条件的参赛方案各有多少种?
(1)甲不能跑第一棒和第四棒;
(2)甲不能跑第一棒,乙不能跑第四棒.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=2an-n+1(n∈N*).
(Ⅰ)若数列{an}是等差数列,求数列{
1
anan+1
}的前n项和Sn
(Ⅱ)证明:数列{an+2}不可能是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,过椭圆右焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,AB+CD=7.
(1)求椭圆的方程;
(2)求AB+CD的取值范围.

查看答案和解析>>

同步练习册答案