【题目】已知命题p:指数函数f(x)=(m+1)x是减函数;命题q:x∈R,x2+x+m<0,若“p或q”是真命题,则实数m的取值范围是 .
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥 的底面为直角梯形, , , , , 底面 , 为 的中点.
(Ⅰ)求证:平面 平面
(Ⅱ)求直线 与平面 所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱的所有棱长都相等,且侧棱垂直于底面,由沿棱柱侧面经过棱到点的最短路线长为,设这条最短路线与的交点为.
(1)求三棱柱的体积;
(2)证明:平面平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,半圆AOB是某市休闲广场的平面示意图,半径OA的长为10,管理部门在A,B两处各安装好一个光源,其相应的光强度分别为4和9,根据光学原理,地面上某处照度y与光强度I成正比,与光源距离x的平方成反比,即y= (k为比例系数),经测量,在弧AB的中心C处的照度为130.(C处的照度为A,B两处光源的照度之和)
(1)求比例系数k的值;
(2)现在管理部门计划在半圆弧AB上,照度最小处增设一个光源P,试问新增光源P安装在什么位置?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,且).
(1)当时,设集合,求集合;
(2)在(1)的条件下,若,且满足,求实数的取值范围;
(3)若对任意的,存在,使不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有以下判断: ①f(x)= 与g(x)= 表示同一函数;
②函数y=f(x)的图象与直线x=1的交点最多有1个;
③f(x)=x2﹣2x+1与g(t)=t2﹣2t+1是同一函数;
④若f(x)=|x﹣1|﹣|x|,则f(f( ))=0.
其中正确判断的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com