精英家教网 > 高中数学 > 题目详情

【题目】有以下判断: ①f(x)= 与g(x)= 表示同一函数;
②函数y=f(x)的图象与直线x=1的交点最多有1个;
③f(x)=x2﹣2x+1与g(t)=t2﹣2t+1是同一函数;
④若f(x)=|x﹣1|﹣|x|,则f(f( ))=0.
其中正确判断的序号是

【答案】②③
【解析】解:对于①:y=f(x)的定义域为{x|x≠0},y=g(x)的定义域为R,定义域不同,所以不是同一函数,故①错误;

对于②:根据函数的定义,函数y=f(x)的图象与直线x=1的交点是1个或0个,即交点最多有1个,故②正确;

对于③:y=f(x)与y=g(x)定义域相同,对应关系也相同,是同一函数,故③正确;

对于④:因为f( )= ,所以f(f( ))=f(0)=1,故④错误.

所以答案是:②③

【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:指数函数f(x)=(m+1)x是减函数;命题q:x∈R,x2+x+m<0,若“p或q”是真命题,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ax,a∈R.
(1)当x=1时,函数f(x)取得极值,求a的值;
(2)当0<a< 时,求函数f(x)在区间[1,2]上的最大值;
(3)当a=﹣1时,关于x的方程2mf(x)=x2(m>0)有唯一实数解,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(α)=
(1)化简f(α);
(2)若f(α)= <α<0,求sinαcosα,sinα﹣cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种新型的洗衣液,去污速度特别快.已知每投放个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间 (分钟) 变化的函数关系式近似为其中.根据经验,当水中洗衣液的浓度不低于4(/升)时,它才能起到有效去污的作用.

1若投放个单位的洗衣液,3分钟时水中洗衣液的浓度为4 (/),的值

2)若投放4个单位的洗衣液,则有效去污时间可达几分钟?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知且满足不等式

1 求不等式

2若函数在区间有最小值为,求实数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),当点是函数图象上的点时,点是函数图象上的点.

(1)写出函数的解析式;

(2)把的图象向左平移个单位得到的图象,函数,是否存在实数,使函数的定义域为,值域为.如果存在,求出的值;如果不存在,说明理由;

(3)若当时,恒有,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求二面角A1﹣AB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民全月工资、薪金(扣除三险一金后)所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额个人所得税计算公式:应纳税额=工资-三险一金=起征点. 其中,三险一金标准是养老保险8%、医疗保险2%、失业保险1%、住房公积金8%,此项税款按下表分段累计计算:

(1)某人月收入15000元(未扣三险一金),他应交个人所得税多少元?

(2)某人一月份已交此项税款为1094元,那么他当月的工资(未扣三险一金)所得是多少元?

查看答案和解析>>

同步练习册答案