精英家教网 > 高中数学 > 题目详情
修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米,已知后面墙的造价为每米45元,其它墙的造价为每米180元,设后面墙长度为x米,修建此矩形场地围墙的总费用为元.
(1)求的表达式;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
(1);(2)若,最小总费用为(元).,则当时,最小总费用为(元).  .

试题分析:(1)根据条件可以将所有墙的长度都用含的代数式表示出来,再由墙的造价,即可得到,又由条件后墙长度不超过20米及前墙留一个宽度为2米的出入口,可知;(2)由(1)中所求表达式可知,要求最小费用,即求,而是一个“对钩”函数,需对的取值范围分类讨论:①,②,从而利用“对钩”函数的单调性求的最小值.
(1)画出如下示意图,由矩形的面积为S,可知与相邻的边长为,∴总费用
显然,∴

(2),则,可以证明递减,在递增.
,即,则当时,最小总费用为(元).
,即,则当时,
最小总费用为(元). 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)若当,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
设函数
,求曲线处的切线方程;
讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,若上的最小值记为.
(1)求
(2)证明:当时,恒有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=(2x+1)3-
2a
x
+3a,若f′(-1)=8,则f(-1)=(  )
A.4B.5C.-2D.-3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若对任意的x∈D,均有f1(x)≤f(x)≤f2(x)成立,则称函数f(x)为函数f1(x)到函数f2(x)在区间D上的“折中函数”.已知函数f(x)=(k-1)x-1,g(x)=0,h(x)=(x+1)ln x,且f(x)是g(x)到h(x)在区间[1,2e]上的“折中函数”,则实数k的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求f(x)的单调区间和极值;
(2)关于的方程f(x)=a在区间上有两个根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1) 当时,讨论的单调性;
(2)设,当若对任意存在 使求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f,c=f(3),则a,b,c的大小关系为____________.

查看答案和解析>>

同步练习册答案