精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).
(1)求f(1),f(-1)的值;
(2)判断函数f(x)的奇偶性.
考点:函数奇偶性的判断,函数的值
专题:计算题,函数的性质及应用
分析:(1)由条件,可令x=y=1,得f(1),令x=y=-1,得f(-1);
(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0,再由奇偶性的定义,即可判断.
解答: 解 (1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),
所以令x=y=1,得f(1)=0,
令x=y=-1,得f(-1)=0;
(2)令y=-1,有f(-x)=-f(x)+xf(-1),
代入f(-1)=0得f(-x)=-f(x),
所以f(x)是(-∞,+∞)上的奇函数.
点评:本题考查抽象函数的函数值的求法:赋值法,考查函数的奇偶性的判断,注意运用定义和赋值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=mx2-2(m+n)x+n,(m≠0)满足f(0)•f(1)>0,设x1,x2是方程f(x)=0的两根,则|x1-x2|的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=a-
2
3x+1
为R上的增函数.
(1)若f(x)为奇函数,求a的值;
(2)若不等式f(3k-1)≥f(k+3)成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义域为R的指数函数.
(Ⅰ)若f(2)=
1
4
,求函数f(x)的解析式;
(Ⅱ)若f(x0)=8,求f(
1
2
x0)
的值;
(Ⅲ)若f(x)在区间[0,+∞)上的值域是(0,1],且f(2x2-3x+1)≤f(x2+2x-5),求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+2ax+b,且f(1)=
5
2
,f(2)=
17
4

(1)求a,b;
(2)判断函数的单调性,并用定义给出证明;
(3)若关于x的不等式mf(x)≤2-x在(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=-12x的焦点作直线l,直线l交抛物线于,A,B两点,若线段AB中点的横坐标为-9,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px (p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在与直线OA(O为坐标原点)垂直的直线l,使得直线l与抛物线C有公共点,且点A到l的距离等于3
5
?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(lg5)2+lg2×lg50=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设集合A={x|x2-2x-3<0},B={x|x-a>0},若A∩B=A,求a的范围;
(2)设集合M={x∈R|ax2-3x-1=0},若集合M中至多有一个元素,求a的范围.

查看答案和解析>>

同步练习册答案