精英家教网 > 高中数学 > 题目详情
给定椭圆C:
x2
a2
+
y2
b2
=1(a
>b>0),称圆心在原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”.若椭圆C的一个焦点为F1(
2
,0)
,其短轴上的一个端点到F1的距离为
3

(1)求椭圆C的方程及其“伴随圆”方程;
(2)若倾斜角为45°的直线l与椭圆C只有一个公共点,且与椭圆C的伴随圆相交于M、N两点,求弦MN的长;
(3)点P是椭圆C的伴随圆上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2
分析:(1)直接由椭圆C的一个焦点为F1(
2
,0)
,其短轴上的一个端点到F1的距离为
3
,求出,即可求椭圆C的方程及其“伴随圆”方程;
(2)先把直线方程与椭圆方程联立,利用对应的判别式为0求出,进而求出直线方程以及圆心到直线的距离;即可求弦MN的长;
(3)先对直线l1,l2的斜率是否存在分两种情况讨论,然后对每一种情况中的直线l1,l2与椭圆C都只有一个公共点进行求解即可证:l1⊥l2.(在斜率存在时,是先设直线方程,把直线与椭圆方程联立,利用斜率为对应方程的根来判断结论).
解答:解:(1)因为c=
2
,a=
3
,所以b=1(12分)
所以椭圆的方程为
x2
3
+y2=1

伴随圆的方程为x2+y2=4.(4分)
(2)设直线l的方程y=x+b,由
y=x+b
x2
3
+y2=1
得4x2+6bx+3b2-3=0
由△=(6b)2-16(3b2-3)=0得b2=4(6分)
圆心到直线l的距离为d=
|b|
2
=
2

所以|MN|=2
r2-d2
=2
2
(8分)
(3)①当l1,l2中有一条无斜率时,不妨设l1无斜率,
因为l1与椭圆只有一个公共点,则其方程为x=
3
x=-
3

当l1方程为x=
3
时,此时l1与伴随圆交于点(
3
,1),(
3
,-1)

此时经过点(
3
,1)
(或
3
,-1)
且与椭圆只有一个公共点的直线是y=1(或y=-1),
即l2为y=1(或y=-1),显然直线l1,l2垂直;
同理可证l1方程为x=-
3
时,直线l1,l2垂直.(10分)
②当l1,l2都有斜率时,设点P(x0,y0),其中x02+y02=4,
设经过点P(x0,y0),与椭圆只有一个公共点的直线为y=k(x-x0)+y0
y=kx+(y0-kx0)
x2
3
+y2=1
,消去y得到x2+3(kx+(y0-kx0))2-3=0,
即(1+3k2)x2+6k(y0-kx0)x+3(y0-kx02-3=0,(12分)
△=[6k(y0-kx0)]2-4•(1+3k2)[3(y0-kx02-3]=0,
经过化简得到:(3-x02)k2+2x0y0k+1-y02=0,
因为x02+y02=4,所以有(3-x02)k2+2x0y0k+(x02-3)=0,(14分)
设l1,l2的斜率分别为k1,k2,因为l1,l2与椭圆都只有一个公共点,
所以k1,k2满足方程(3-x02)k2+2x0y0k+(x02-3)=0,
因而k1•k2=-1,即l1,l2垂直.(16分)
点评:本题主要考查椭圆的方程和几何性质,直线的方程,两点间的距离公式以及点到直线的距离公式等基础知识,考查用代数方法研究圆锥曲线的性质和数形结合的数学思想,考查解决问题的能力和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”. 已知椭圆C的两个焦点分别是F1(-
2
,0)、F2(
2
,0)
,椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3

(Ⅰ)求椭圆C及其“伴随圆”的方程
(Ⅱ)试探究y轴上是否存在点P(0,m)(m<0),使得过点P作直线l与椭圆C只有一个交点,且l截椭圆C的“伴随圆”所得的弦长为2
2
.若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(>b>0),将圆心在原点O、半径是
a2+b2
的圆称为椭圆C的“准圆”.已知椭圆C的方程为
x2
3
+y2=1.
(Ⅰ)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;
(Ⅱ)若点A是椭圆C的“准圆”与X轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆m的“伴随圆”. 若椭圆C的一个焦点为F2(
2
,0)
,其短轴上的一个端点到F2距离为
3

(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若过点P(0,m)(m<0)的直线l与椭圆C只有一个公共点,且l截椭圆C的“伴随圆”所得的弦长为2
2
,求m的值;
(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,试判断直线l1,l2的斜率之积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”. 若椭圆C的一个焦点为F2
2
,0
),其短轴上的一个端点到F2距离为
3

(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若过点P(0,m)(m<0)的直线l与椭圆C只有一个公共点,且l截椭圆C的“伴随圆”所得的弦长为2
2
,求m的值.

查看答案和解析>>

同步练习册答案