(本题满分12分)
已知椭圆
的中心在原点,焦点在
轴上,椭圆上的点到焦点的距离的最
小值为
,离心率为
。
(I)求椭圆
的方程;
(Ⅱ)过点(1,0)作直线
交
于
、
两点,试问:在
轴上是否存在一个定点
,使
为定值?若存在,求出这个定点
的坐标;若不存在,请说明理由。
解:(I)设椭圆E的方程为![]()
由已知得:
···························· 2分
![]()
![]()
椭圆E的方程为
······················ 3分
(Ⅱ)解:假设存在符合条件的点
,又设
,则:
![]()
················· 5分
①当直线
的斜率存在时,设直线
的方程为:
,则
由![]()
得![]()
![]()
···················· 7分
![]()
所以![]()
················ 9分
对于任意的
值,
为定值,
所以
,得
,
所以
;····················· 11分
②当直线
的斜率不存在时,直线![]()
由
得![]()
综上述①②知,符合条件的点
存在,起坐标为
。·········· 12分
【解析】略
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com