| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
分析 f′(x)=$\frac{1}{x}$+mx2-3x=$\frac{m{x}^{3}-3{x}^{2}+1}{x}$,由于f(x)在$[{\frac{1}{6},6}]$内单调递增,可得f′(x)≥0,m≥$\frac{3{x}^{2}-1}{{x}^{3}}$=g(x),再利用导数研究函数g(x)的单调性,可得g(x)的最大值,即可判断出结论.
解答 解:f′(x)=$\frac{1}{x}$+mx2-3x=$\frac{m{x}^{3}-3{x}^{2}+1}{x}$,
∵f(x)在$[{\frac{1}{6},6}]$内单调递增,
∴f′(x)≥0,m≥$\frac{3{x}^{2}-1}{{x}^{3}}$=g(x),
g′(x)=$-\frac{3}{{x}^{2}}$+$\frac{3}{{x}^{4}}$=$\frac{3-3{x}^{2}}{{x}^{4}}$,
当x∈$[\frac{1}{6},1)$时,g′(x)>0,此时函数g(x)单调递增;当x∈(1,6]时,g′(x)<0,此时函数g(x)单调递减.
∴当x=1时,函数g(x)取得最大值g(1)=2.
∴m≥2.
则q是p的必要不充分条件.
故选:B.
点评 本题考查了利用导数研究函数的单调性极值与最值、不等式的解法、函数的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-1,2] | B. | [0,2] | C. | (-∞,2] | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin(2x-$\frac{π}{6}$) | B. | y=sin(x-$\frac{π}{6}$) | C. | y=cos(x-$\frac{π}{4}$) | D. | y=tan(2x+$\frac{π}{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com